v

(S8% Ny

Clock Overwr

Neset Progriq

TO TRULY
UHDERSTAND A
COMPUTER, YOU

MUST BUILD
OHE.

e AN »
S

—h ™ < S RV €

Xf)\1} N

“To truly understand a computer, you must build one.”

(anonymous)

B4 Spark Mission Guide, Revision 1.0.2

Table of Contents

Included Parts..........cooiiiiiiiiiieeeeeese s 6
Hello Parents and Teachers.........cccoooiiiiiiiiiiiniiiiniinise e 7
Hello StUAENtScoiiieiin e 7
= e T (S 8
(080T (= /o To [L= 9
Helper MOQUIES..............ceeeeeiieieieeeenmeeessssscssssssssn s s s nssnemnmssssssssssssssssnsnnnnssnnnnnnnnnnnn 11
Wires and CONNECIONSceuueeevessummensiissssssmnnnsssssssssnssssssssssssnnnsssssssssssnnsssssssssnnes 12

A WOrd @DOUL POWETueeeeeeeeennennnssssssssssssssssssssssssssssssssnnnsnnssssssssmmmmmmmsssssssssssssss 13
Please 100K After Me............euummeveessummnniiiisisssmmnnsssssssssssnsssssssssssnsnssssssssssnsnsssssssssnnes 13
Exploration through MiSSIONS...........cciiiiiiiiiiiiiin s 14
MiSSION OVEIVIEWcoiiiieieiiiiessinsisss s s s s ssss s s s sam s s an e s s an e e an e e mnn s 15
@ Part 1 — Building the FOUNAALIONSc.eceeueeueuresnesssssssssessssssssssssssssssssseans 17
Mission 1 — The Heartbeat of the Machine..............coomeeeevvesseemmmssircissemnnnssssssannns 18
Mission 2 — The B4 Learns t0 Add...........eeeeeeeeeeeeiiisivsvvsssssssssssssssssssssnnensssssssmmmmmns 22
Mission 3 — The B4 Learns t0 SUDIIACTceeeveeevcummmniicicieeeenessscssssmnessssssssnnes 24
Mission 4 — The B4 Learns to ReMemMDErccevvvvvvvssssssssssssssmmmmnnmnmmssmmsmmmmmnns 28
Mission 5 — The B4 Builds Its MemOry TOWEF..........cccccuuuussssssssssssmmmenmemmmssssmmmmmmnes 33
Mission 6 — The B4 Learns to Route TraffiC.........c.ccoommerevvsssuemmmssssssssnmnnsssssssssnnes 37
Mission 7a — Adding Three Numbers by Hand (with a Memory Boosl) 39
Mission 7b — Automating the Third Number (No More Manual Copying)......... 42
Mission 7c — Loading and Adding with Data RAMccoovvvuemememeeemmnemnsssssnnnns 45
Part 2 — Automation with Program RAM..........miriiiiirirsssnsssssseseennns 49
Mission 8 — Automating the Selector with Program RAM...............ccccouuervvcsrunnes 50
Mission 9 — Program TabIeseeeemmmmmmeemmmmmsssssssssssssssssssssssssssnnsssnssssssssssmmmmns 53
Mission 10 — Subtraction With the INVEILermmeeeeeeereenericcisssmneensssssssnnns 55
Mission 11 — Storing Calculation Results in the Data RAM...............cccuevveeuu.es 59
LL| Here’s a question: How does Program RAM tell the hardware what to do?....63

LL| Here’s another question: Why does everything work in just the right order? 64

B4 Spark Mission Guide, Revision 1.0.2 3

G Part 3 — Toward a Real CPU...........cocooimiimmrmnessnnsss s snsss s sssssss s snssans 65

Mission 12: Automatic Programming................eeececmmmmmssssssssssssssssssssssssssssssssmmmmmns 66
Step 1: Installing the Automatic Programmerccuccceveemcvsssmsssssssmssssssssssssssssnes 66
Step 2: Modules and tReir Wiring............cccccueevvcsessssesssssssssssssssmssssssssssssssssssssssssssssns 67
Step 3: Installing and Configuring the Arduino IDE.................mmemeeeeccissmmennnsrscssssnns 70
Step 4: Installing the B4 Arduino LiDIaArYccueceevseemivisseesisssssessssssssssssssssssssssssnes 70

Mission 13: Program Language DEeSigQNccccevreummmmmirsssssmmmmssssssssssnsssssssssssnnes 75
Simplifying OUE PrOGIaM............cuueiceseesscissusesssssssnssnes 78
LT 1 11 - T R 78

Mission 14: On the ROI€ Of TiMiNGccccevvummemmririiiiammnnsscssssssmnnnssssssssssnnesssssssssnnes 79

Mission 15: So, how does a Computer work ... actually?............cccoeeemeervvvisrunns 80
Logic and BooIean LOGIC..........cccuueeeeevcissssmmmmmssssssssssssnnnsssssssssssssnnsssssssssssssssnnsssssssssssns 80
A Logical Adding MacCHRINE............ccoeeeeeemiersssns 82
A Logical MemOry MacCRINEccoocuemeeriisssssssemnnnssisssssssssnnnsnssssssssssssssnsssssssssssssnnnnes 85
L T [1 == o o U 89
L5711 11 TR 93

T Tod o I L 037 o 1= g =TTV | 4RI 94
Software: Understanding the B4’s Arduino Libraryumeeecvesesvcssensssisanns 94

Hardware: Hacking deeper yet by understanding the Automatic Programmer99

Hack 1: Randomly incrementing the Program Counter..................... 102

Hack 2: Randomly changing the Data RAM................ooeevvvvvvvvvvissisinnns 103
Further Reading.......ccccirrrriinemmmmmmmmenn s s 105
TroubleShOOtiNg ... s nmnnnnns 105
Appendix A: Programming Table Templateccccmimmmmmmmmmccccisiiissssesnennes 106
Appendix B: Fun Algorithms ... sssssssssnnes 107
Appendix C: SOIULIONS ... s s s nnns 107
Appendix D — Design Debate: Accumulator vs. Selectorccceviiniiisnnnnnnnnnnns 121
Appendix E: Extension Kits........cccouuiiiiiiiinnnsssseeemsesmss s sssssssssnnes 122
Appendix F: Quick Reference GUIde...........cooccmmriiinniemmmnnnnssssss s ssssssssnes 123

B4 Spark Mission Guide, Revision 1.0.2

WARNING:

CHOKING HAZARD - Small Parts

Not for children under 3 years.

PHOTOSENSITIVE EPILEPSY - Some of the experiments produce light flashes
that can potentially trigger seizures in people with photosensitive epilepsy

Safety instructions

The B4 operates on 5 Volts and only draws a few milliamperes. Nevertheless, it is an
electrical device and should be handled as such. We recommend treating it with care and
keeping it on a non-conductive, dry and level surface. Do not scratch the surface of the
printed circuit boards with sharp or metallic instruments, as this might damage the wires.

Acknowledgements

We want to thank Charles Petzold, the author of ‘Code: The Hidden Language of
Computer Hardware and Software’, published in 1999. His book has both inspired and
guided the design of the B4. We recommend it as additional reading material for students.

We would further like to thank Henrik Maier from proconX for his guidance and feedback
on the electrical engineering design, fabrication and component selection, which has been
invaluable to transforming the B4 from a breadboard prototype to a robust design that can
be used in the classroom.

Special thanks to Dr. Hayden White for his support and input, which have been invaluable
to get the B4 off the ground. His regular feedback on the development of the B4 has
influenced many of the design decisions.

A big thank you is owed to Martin Levins, Katie Woolston and Michael Schulz for their
contributions to this handbook. David Schulz has contributed code that drives the seven-
segment LEDs of the Program Counter and the Decimal Display. He originally developed
this for his Young ICT Explorers project, The Tardis, in 2016. We’d further like to thank the
Arduino community: Two of the B4’s modules deploy an Atmega processor that runs
Arduino programs. Keep up the great work!

Mrs. Sharon Singh and her year 8 students (8N and 8W) at St. John’s Anglican College in
Forest Lake, QLD, have provided very valuable feedback on the B4 and this handbook,
which has led to many improvements. Thank you!

The logic diagrams in this handbook have been designed using the Logicly program. We
believe it is a great tool for quickly drawing and testing Boolean logic problems.

Dr. Karsten Schulz, CEO
The Digital Technologies Institute.

B4 Spark Mission Guide, Revision 1.0.2 5

Included Parts

B4 Spark Core
Single board B4
2xVariable

4-Pin Wires
2-Pin Wires
1-Pin Wires
USB Cable
Student Handbook

B4 Spark Master Programmer

Automatic Programmer Arduino Shield

Arduino Uno compatible (required for the full function of the Automatic Programmer
Arduino Shield)

B4 Arduino Library (available for download at http://www.digital-technologies.institute/
downloads)

Power Consumption:
5V, 220mA (peak), 1.1W DC.

This product complies with the Restriction of Hazardous Substances Directive and is lead-
free.

The illustrations in this handbook may differ slightly from the actual modules. However, the
functionality is the same.

This handbook has been made with great care. If you find errors or have suggestions for
improvement, please email us at enquiries @digital-technologies.institute.

Designed and manufactured in Australia
(c) Digital Technologies Institute PTY LTD, 2016-25 AD. All rights reserved.

6 B4 Spark Mission Guide, Revision 1.0.2

http://www.digital-technologies.institute/downloads
http://www.digital-technologies.institute/downloads
mailto:enquiries@digital-technologies.institute

Hello Parents and Teachers

The B4 is an educational computer that supports students in their learning about digital
systems. It has been designed from the ground up to support the new Australian
Curriculum: Digital Technologies, as shown in the following table. A complete mapping of
the B4 against the Australian Curriculum: Digital Technologies is available for download at:
https://www.digital-technologies.institute/downloads

Digital systems
Data Representation

Acquiring, managing and
analysing data

Investigating and defining
Generating and designing
Producing and implementing
Evaluating

Collaborating and managing

Privacy and security

The B4’s design dates back to the 1970s, when early digital computers began to emerge.
It follows similar design principles to some of the famous classic computers, such as the
Apple |, the Altair 8800, or the Z-80. These principles remain valid today in modern
computers, smartphones, and tablets. The B4 illustrates these principles and combines
them with modern 21st-century Arduino technology, allowing students, parents, and
teachers to explore the magic of creating a computer without needing a university degree.

Hello Students

Computers were once bigger than our bedrooms. Their parts were big and you could hear
and see them working, or computing, as we say. Modern computers have become very
tightly integrated and fit into the pockets of our pants. However, this means that their parts
have become so small that we can hardly see them with the naked eye. Therefore, the B4
has bigger components that you can easily see. Whereas the speed of modern computers
is measured in billions of instructions per second, the B4 operates at human speed, thus
allowing us to see with our own eyes how data flows between each of the B4’s modules.

The B4 can store and process numbers and instructions that are 4 bits long, meaning that
it can work with positive numbers from 0 to 15. It has one data storage and one program
storage module. Each of them can hold 16 of these 4-bit numbers.

This may not sound like much, because you are probably used to 64-bit computers with
gigabytes of memory. But the B4 is not meant to compete with these computers. It is
simple enough to teach the fundamentals of Digital Technologies. Still, you will be
surprised at what can be done with a 4-bit computer.

B4 Spark Mission Guide, Revision 1.0.2 7

https://www.digital-technologies.institute/downloads

B4’s Parts

Now let’s see what’s in the box: The B4 consists of modules that represent the most
important parts of a Computer’s Central Processing Unit (CPU) and Memory, plus four
helper modules for programming and data conversion. The B4 can be programmed
manually, step by step, which is useful for learning coding in detail. For convenience and
to aid in the repetition and expansion of experiments, the B4 Master Programmer kit also
features an Automatic Programmer, which requires an Arduino Uno or a compatible
device.

Generally, each module receives its input through connectors at the lower end and
provides an output through connectors at the top. All connectors are labelled with an input
arrow pointing to a connector or an output arrow pointing away from a connector.

et

RRRRRENR

=Y L g g g l? E E]

(= T 11] .
——— ~ * . ’ Resat
ﬁ aEEE G :Lo-t:'.-w)

‘”‘—‘:L(
Selector

=]II!I'II!

LR L

O t Data RAM ** Program RAM
u u ' 3 L LL
p 29 IYTTTITY) i B
ov l iE = =
a'w T ¥ EEETET

=
|V

&N < DIGITAL Program
TECHNOLOGIES ' , o or
& INSTITUTE Counte

- =
EAAA A E111111)

When we wire up the B4, we always connect the output of one module to the input of
another module. We never connect two inputs.

8 B4 Spark Mission Guide, Revision 1.0.2

If you look closer at the board, you can see that white lines separate the board into eight
departments. Each department has a special function. Let’s explore them:

Convert any binary number to decimal

Add 2 Short-term
numbers memory
Subtraction Steer data

helper

Store data Store program

@
== Counter and
::4’, ;_‘,') Pacemaker

Aato

Core Modules

The Program Counter’s primary function is to count from 0 to 15. Every time you press
the Enter button, the number on the display will grow by one. When it shows 15 and you
press the button, the counter will tick over and start at 0 again. This number is important
for the Data and Program RAM modules so that they know which step of the program they
should be working on and where the corresponding data is located. Every time you press
the Enter button, the
Program Counter will also __
send a clock (abbreviated R Teonooes Elo o) ogram
as CLK) signal to some of S &, :3&” * %
the other modules. We will S A Al
talk about this later. The -
program Counter also has

a Reset button, which
resets the output to O.

= =
AYNINYY FERRENY

B4 Spark Mission Guide, Revision 1.0.2 9

The Data Random Access Memory (RAM)
holds the data that the program is working on.
For example, it would hold two numbers that the
program will be adding. The Data RAM has

AVWIWEY w5 xe 2 4 room for 16 numbers, which are 4 bit wide, thus
= representing the decimal numbers of 0 to 15.
g l_m;.HE The Data RAM is a 16 by 4, or 16x4, memory
module.

The Program Random Access Memory (RAM)
holds the program that manipulates the data. For
example, it would contain the information so that

two numbers from the Data RAM would get . === Program RAM
subtracted, or that the result of an operation be T ggg B ==
il I =

stored back into the RAM. You will see later that a
program is quite different to what you think it is.
Like the Data RAM, the Program RAM has room
for 16 instructions, which are 4 bit wide, thus
representing the numbers 0 to 15. Therefore, the
Program RAM is also a 16 by 4, or 16x4, memory
module.

i R TTTTTT
Iy !

sfitnngg

N . Ade

38 1)

o e E E E EB B The Adder can add exactly two numbers.

S

AN
\H The Inverter’s function is to help the Adder to

subtract numbers. In the binary world,
subtracting is the same thing as adding the
binary complement, and then adding 1 to the

-) ==
{n_ e o y result.

The Selector is a switch that can change the data
paths in our computer. Precisely, it is used to select
data from the Data RAM or from the Adder. This is el S g gg

H H ; - -‘unnn| E j
important when adding two numbers, as we will see

later. i S = @ ﬁ
Seect =:

A Latch has the function of short-term memory in
a computer. It stores (or ‘buffers’) some data -~ _
before that data can be further processed. For ® Yo X i EE i
example, in the B4, the Latch stores the first LI B o
number so that a second number can be addedto - E [+ax
it.
10 B4 Spark Mission Guide, Revision 1.0.2

Helper Modules

All computers internally work with binary numbers only. However, we humans are more
familiar with decimal numbers. As you work with the B4, you will get used to 1’s and O’s,
and you will find it increasingly easy to remember that a 0111 is a decimal 7. The Decimal
Display is a handy module that performs binary-to-decimal conversion for you. You can
plug it into any output port of any other module, or insert it between any two other
modules.

L)

i

Decimal Display

"
3
e
g
i

el

NSTTUTE

(1111111

2
-
e
)

T

B4 - Variable

: ﬂ With the Variable we can produce binary

2 | data simply by rotating the knob. You can
think of it as a variable in a computer
program. With its button we store data and
program code in the Data and Program RAM
modules. The B4 ships with two Variable
modules. The knob of the Variable was made
on a 3D printer.

_ _ | AT O Gy g dadd
The Automatic Programmer is the Variable’s : Ry S
bigger brother (or sister). The Automatic » I - | :
programmer can be plugged into an Arduino control Signate 13 22 it
Uno (or compatible). With the Arduino
Integrated Development Environment (IDE) we
can then write and transfer B4 code from our
laptops or PCs. The B4 comes with a handy -
Arduino library that you can use to write your

B4 Automatic Programmer
Reset Program Counter

Az

B: Clock Overurite

C: Write Data RAM

D: Write Program RAM

E: Latch Reset /’
|

[p—— Y

From Progras RN

own B4 programs. We’ll talk more about this a B . GRTRRN 9%9%9%9}9‘“3

little later. o

We now have a basic understanding of the modules of our B4. Don’t worry if you haven't
understood everything yet. We will revisit each module in more depth during the following
experiments.

B4 Spark Mission Guide, Revision 1.0.2 11

Wires and Connectors

To connect the B4 modules with the computer and with each other, the B4 comes with four
types of wires. They are:

A USB cable to provide electricity from a
power source to the B4’s Program Counter
module and from there, to all other modules
connected to the Program Counter. You can
connect the USB cable to a PC, Laptop, USB
Hub, USB battery, or any other suitable 5V
power source with a USB port.

2 pin power wires with black/white and red
wires. They are part of the B4’s power
distribution system and transport electricity from
module to module. Each module has one power
input and 1-2 power outputs.

4 pin data wires. These transport 4 bit data
and program counter signals from the output
of one module to the input of another module.

1 pin control wires. They transport operation
codes and instruct some of the modules of the
B4 to do special things, such as storing data. The
1 pin wires come in many different colours.
However, they all work the same and their colour
has no influence on their function

You will find corresponding connectors on the modules. The 2 and 4-pin connectors are
directional, and the wires will easily click into them. Unless you apply excessive force, you
should not be able to accidentally plug them in the wrong way.

12 B4 Spark Mission Guide, Revision 1.0.2

A Word about Power

The B4 has an electric power distribution system. There are four white two-pin ports on the

B4, and the Variables and Automatic
+5V ..GND (oVv)

Programmer have two.

+5V is on the left and GND (Ground, or OV)
is on the right. The power wires will
automatically connect in the correct way,
but sometimes we will need to connect a
single wire to either +5V or GND during
some of the experiments. When asked to
connect to +5V, just plug a single wire into
the left pin of the power node. If asked to
connect to GND, plug a single wire into the
right pin of a power node.

Please look after me

The B4 is fairly robust and will last a long time with proper care. As long as you don’t plug
wires into connectors that are not designed to fit, and as long as you don’t drop the
modules, step on them, or use them as a doorstop, things should be just fine.

Always only plug the 2-pin wires into 2-pin connectors. The same applies to 4-pin wires
and connectors. Under no circumstances plug a 2-pin wire into a 4-pin connector.

Ok, that is enough preparation for now. We will collect more details as we work through the
missions. Let’s get started.

B4 Spark Mission Guide, Revision 1.0.2 13

Exploration through Missions

In this book, we conduct missions during which we will be plugging wires into the B4
modules, letting them work together and experimenting with data and hardware. On
occasion, when the bell rings at the end of the lesson, we may not quite be finished with
an investigation. So that we don’t have to take all our good work apart (and start from
scratch next lesson), the B4’s packaging also serves as a storage tray. The foam insert
features several cut-outs to protect the B4's modules during transport. But now that the B4
has arrived, we no longer need them. Let’s turn the packaging into a lab:

Step 1
Remove all the B4 modules and wires from the packaging and place them on your desk.

Step 2
Remove the foam insert from the box, flip it over - as shown below - and re-insert it with
the flat side up. Reinsert it into the box.

Step 3

Place all modules neatly side-by-side on the foam insert and place all the wires in the cut-
out at the top. This will keep the wires that we don’t require for a mission neatly in one
place.

In the future, we can simply leave our experiments on the foam insert, close the lid, and
place the box on a shelf - or anywhere else your teacher tells you.

14 B4 Spark Mission Guide, Revision 1.0.2

Mission Overview

We have prepared several missions to help you become familiar with the B4 modules,
their usage, and the functions they perform. You will learn how to combine modules so that
they perform functions together, which they could not perform individually. Ultimately, you
will develop a computer and learn about coding from the ground up. You will also learn
how a computer works internally and what critical role timing plays in the proper function of
a computer’s internal communication.

We recommend that you take the missions in sequence. But if you are already a computer
genius, feel free to jump around. We should mention that the B4 can do much more than
what this handbook says. Feel free to explore and try out different things as you like.

Mission Title Objectives
1 The Heartbeat of the Bring your B4 to life by starting its heartbeat, learn
Machine to read its pulse in both human and
machine language, and discover how it keeps every
part in sync.
2 The B4 Learns to Add | Give your B4 its first real thinking skill — adding two
numbers.
3 The B4 Learns to Teach your B4 how to take one number away from
Subtract another
4 The B4 Learns to Give your B4 a short-term memory so it can
Remember temporarily store information while working

on a problem.

5 The B4 Builds Its Upgrade your B4’s memory from short-term storage

Memory Tower to long-term storage using the Data
RAM.

6 The B4 Learns to Teach your B4 to choose which data stream gets
Route Traffic through.

7a-c Adding Three 3 missions in which we add numbers a) by hand, b)
Numbers automatically and c) with the Data RAM

8 Automating the Learn how to use Program RAM to control the
Selector with Program | Selector automatically.
RAM

9 Program Tables Learn how to write programs in a clear table format,

making it easier to describe, run,
and share your programs.

10 Subtraction with the Extend your program table so the Program RAM
Inverter can control the Inverter. This allows
your computer to perform subtraction automatically.

B4 Spark Mission Guide, Revision 1.0.2 15

Mission

Title

Objectives

11

Storing Calculation
Results in the Data
RAM

Learn how to let Program RAM control writing into
Data RAM.

12 Automatic Function of the Automatic Programmer module for

Programming persistent storage of B4 programs on an Arduino
and for rapid programming of the B4. Extension of
the B4’s programming principles.

13 Program Language Investigating a compact and conceptional notation.
Design Assembly language and the role of an assembler.

Shortening of the software design and testing cycle.

14 On the Role of Timing | Fundamental role of precise timing of the
communication of the B4 modules.

15 So, how does a How complex logic problems can be expressed by
Computer work ... Yes/No. Boolean logic. The role of gates and
actually? transistors and how higher-level computer functions

are constructed, such as arithmetic units and
memory.

16 Cyber Security Hacking the library so that it alters data and
program code. Making the Automatic Programmer
module interfere with the normal operation of the
B4 at runtime.

16 B4 Spark Mission Guide, Revision 1.0.2

@ Part 1 — Building the Foundations

In the first part of your journey, you’ll explore the basic
building blocks of a computer. One by one, you’ll discover
how modules work and how they can be connected. Step by
step, you’ll move from adding two numbers to chaining
calculations and finally using Data RAM as memory.

By the end of Part 1, you’ll understand the “vocabulary of
hardware and binary numbers”: how data is represented
and how it flows through the B4, how temporary storage
works, and how simple arithmetic can be performed. You've
essentially built a very basic calculator — but one where you
can see and control every single bit.

B4 Spark Mission Guide, Revision 1.0.2 17

Mission 1 — The Heartbeat of the Machine

Objective

Bring your B4 to life by starting its heartbeat, learn to read its pulse in both human and
machine language, and discover how it keeps every part in sync.

The Story

Every living thing has a heartbeat — and so does your computer. On the B4, the
Program Counter is the heart. Each beat sends a signal pulsing through the system,
telling every part when to work. Without it, the machine is silent and lifeless.

In this mission, you’ll plug in the heart, make it beat, and learn to read its rhythm in two
languages: machine speak (binary) and human speak (decimal). You’ll also find out how
this simple beat secretly controls every other module in the B4.

Step 1 — Waking the Heart
Connect the Program Counter module to your computer using the USB cable. A white
display will flash b4 — the machine’s way of saying “Hello.”

On the Program Counter, find the Enter button. Press it once. The display changes to 0.
Press it again and it changes to 1. Every press increases the number by one. It’s counting
— but not just for you. Every press also sends an invisible electrical “beat” through the B4.

ST DAL Program
/5 TECHNOLOGIES . Counter
& wstmore Lo Jount
- ° & 7, 2 5

= Aaagaae

|
© raseene

Setup of Mission 1
Step 2 — The Language of Light
At the top of the Program Counter are four tiny LEDs. They light up in different patterns
each time you press Enter. This is binary — the language your machine speaks.

They show exactly the same number as the display, but in binary. If your display shows a
2, then the LEDs will show a 0010, like this:

v el

0010 in binary is a decimal 2

18 B4 Spark Mission Guide, Revision 1.0.2

When you press the button again, the display will show a 3 and the LEDs will show the

following pattern:

0011 in binary is a decimal 3

So, 3 is equal to 2 + 1. Which pattern will be displayed when you press the button again?
The display shows a 4, and the LEDs will look like this: 0100

v Vel

0100 in binary is a decimal 4

If we continue to press the button, we will see more light patterns in our LEDs and the
corresponding decimal numbers on the display. We can enter these into a table.

binary decimal
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

B4 Spark Mission Guide, Revision 1.0.2 19

That’s a lot of binary numbers. We could try to remember them by heart, but let’s see if
there is an easier way. Can you perhaps see a pattern in the table above?

Each LED has a value: the one on the far right is worth 1, the next is worth 2, then 4, and
the one on the far left is worth 8. If the LEDs show 1101, youadd 8 +4 +0 + 1 =13.
Binary may look mysterious, but it’s just another way to write numbers — and your B4 can
only count up to 15 (binary 1111) before looping back to 0.

You only need to remember that the right LED represents a 1 and that the numbers
double as we go from right to left. This means that we only have to remember two rules
about binary numbers.

Checkpoint
Challenges 1

What is the decimal value of 11117

What is the decimal value of 01107

What is the decimal value of 10107

What is the binary value of decimal 157

What is the binary value of decimal 127?

What is the binary value of decimal 97

How can you easily spot an odd binary
number?

We have established that the Program Counter counts from 0 to 15, or, in binary numbers,
from 0000 to 1111. By now you have probably discovered that it will tick over to 0000 after
1111. Why is this? Remember that our counter is binary and it is 4 bit only. Adding 1 to
1111 results to a 5 bit number, which is 10000. And because our little counter can’t store
the 5th bit, it will simply think that 0000 is the new number. This is not a bug, as we will see
later.

Step 3 — The Beat of the Clock

Every time you press Enter, the Program Counter sends out a clock signal (CLK). Think of
it as the drumbeat in a song — every other module listens for that beat so they know
exactly when to do their part.

The signal jumps from OV to 5V, resides there for a short period, and then drops back to
0OV. We refer to OV as LOW and 5V as HIGH. In the B4, the CLK signal remains HIGH as
long as the Enter button is held down. When you release the Enter button, the CLK signal
returns to LOW.

20 B4 Spark Mission Guide, Revision 1.0.2

N

1 L 1 1 Il l
-10 -8 -8 -4 2

CLK signal

N

Some modules prefer the opposite rhythm, so the Program Counter also produces an
inverse clock, called NOT-CLOCK (!CLK), which is “on” when CLK is “off.” Later, you’ll use
both signals to control different parts of the B4. The !CLK signal is the opposite of CLK. It
is normally HIGH and drops down to LOW whilst the Enter button is pressed. Our ICLK
looks like this.

1 1
-10 -8 -6 4 2 | 2

Inverse CLK Signal: ICLK

You might ask why we need both, CLK and ICLK? The answer is that some of the
computer circuits require a positive activation signal to do something. The Latch, for
example, requires a positive signal. Other circuits, such as our RAM modules are LOW
active and need a LOW signal to store data.

We'll talk more about CLK and !CLK when we cover the Latch and RAM modules in the
following experiments, and also at the end of the book in mission 14, which is about timing.

B4 Spark Mission Guide, Revision 1.0.2 21

Mission 2 — The B4 Learns to Add

Objective

Give your B4 its first real thinking skill — adding two numbers. You’ll meet the Adder,
learn how it works, and see why addition is the foundation of almost everything a
computer can do.

The Story

Your B4’s heart is now beating, but right now it’s just counting time — it doesn’t know
how to do anything useful with numbers. A heartbeat without a brain doesn’t get you far.

It’s time to give the B4 its math brain — the Adder module. This is the part of your
computer that can take two numbers and combine them into one. It might sound simple,
but here’s the twist: once a computer can add, it can also subtract, multiply, divide, and
do just about any calculation you can imagine. Addition is the bedrock of computing.

Use:
* Program Counter (for power only this time)
+ Adder module
+ Two Variable modules (these are like your “number knobs”)
* Decimal Display (so you can see the result in human numbers)

Connect them as shown in the diagram. The Variables will feed numbers into the Adder.
The Program Counter will simply power the system.

Setup of Mission 2
22 B4 Spark Mission Guide, Revision 1.0.2

Experiment

1) Turn the knobs on both Variables until their LEDs are all off.
2) Slowly turn the knob on one Variable so that just the rightmost LED is lit — that’s
binary 0001, or decimal 1.

What is the output of the Adder? The right LED on the Adder will light up.

Understand

That’s because 0+1 is 1.
Turn the knob of the other Variable to show the 0001 LED pattern.

The Adder will then show 0010. That’s because 1+1=2, which is 0010 in binary. Binary
addition works just like the addition you already know with one difference, any number
higher than 1 leads to a carry over. In the decimal number system that you already
know, any number higher than 9 leads to a carry over. So, in a sense, binary addition is
simpler than decimal addition.

0001 0101
+0001 +0110

0010 1011

Checkpoint Compute with your B4 and also on paper:
Challenges 2

What is 0101 + 10107

What is 0010+00107

What is 0111+00017

[| Whatis 1111 + 0001? Why are all the
Adder’s LEDs off?

B4 Spark Mission Guide, Revision 1.0.2 23

Mission 3 — The B4 Learns to Subtract

Objective

Teach your B4 how to take one number away from another by introducing it to the
Inverter module and the clever trick of using complements.

The Story

Your B4 can now add, but there’s a problem — life isn’t all about getting more.
Sometimes, you need to take things away. Computers don’t have a built-in “minus”
button the way your calculator does. Instead, they use a clever hack: they turn
subtraction into addition.

How? By flipping all the bits in the second number — making what’s called the binary
complement — and then adding 1. It’s like if you wanted to find out how far someone is
from the finish line, you could measure from the end backwards instead of walking all
the way there.

This trick is so common that it’s built right into computer hardware. On the B4, the
Inverter module does the job of flipping the bits for us.

Step 1 — Meet the Inverter

The Inverter is like a tiny mirror for binary numbers. If a bitis 0, it flips it to 1; if it's 1, it
flips it to O.

Example: 0011 becomes 1100.

You'll need:
+ Program Counter (for power)
« Adder
+ Two Variable modules
* Inverter

+ Decimal Display

1) Use the setup from mission 2. In the image below, we have rearranged one of the
variables so that you can see the wiring between the modules better. But you can
keep the variable where it was and just use longer wires, if you like.

2) Use the Inverter module between the bottom Variable and the Adder

3) Connect a 1-pin wire from the Subtract Out Pin of the Inverter to the Subtract In
Pin of the Adder module.

4) Connect another 1-pin a wire from the Inverter’s Subtract In pin to the +5V Pin.

5) Set both Variables to 0000 (all LEDs are off).

The following diagram shows the setup of this mission.

24 B4 Spark Mission Guide, Revision 1.0.2

- -
-2 - o3 |

asaas EmEm
=

& |
daaa EmEm

Setup of Mission 3

Let’s calculate 4 — 3.

+ On the top Variable, set 0100 (decimal 4).
+ On the bottom Variable, set 0011 (decimal 3).

What is the output of the Adder? What is the output of the Inverter?
The Adder shows 0001. We conclude that 4 - 3 =1 YEA!

The Inverter Displays the complement of 0011, which is 1100.

B4 Spark Mission Guide, Revision 1.0.2 25

Step 4 — Why This Works

When the Inverter is active, it flips 0011 into 1100 — the binary complement of 3. The
Adder then does:

0100 (4)
+ 1100 (complement of 3)

10000

That’s a 5-bit number, but our B4 can only handle 4 bits, so it chops off the extra “1” at
the left, leaving 0000.

But wait — that’s not the answer yet. We need to add 1 to complete the subtraction trick:

0000
+ 0001

0001 (decimal 1)
And there’s your answer: 4 - 3 = 1.
The complement-and-add method is used in nearly every modern computer, from
laptops to smartphones. Instead of building separate circuits for addition and

subtraction, engineers use the same Adder for both — saving space and parts.

This works for any numbers A and B. Try it out !

Step 5 — Finding +1 in hardware

You may now wonder: “How does the Adder know when to add 1? Do you see the 1-pin
wire that connects the Adder and the Inverter? If you pull it out, then the +1 goes away
and the Decimal Display will show the output of the Adder as 0. Try it. Reinsert the wire
when you are done to restore correct subtraction.

Step 6 — Deactivate the inverter

When you move the endpoint of the 1-pin wire from +5V to GND, then this deactivates
the inverter. Try it! The Inverter will then not flip the bits and the Adder will then just add
the numbers, rather than subtracting them.

So: 4+3=7 \

A simple electrical signal makes the B4 do subtraction. Imagine if a program could send
this signal automatically. We will explore this in mission 8.

26 B4 Spark Mission Guide, Revision 1.0.2

Step 7 — Going Further

number, you’re actually doing division.
Example:

15-5=10
10-5=5

If you keep subtracting the same number from a starting value until you get below that

5-5=0 — Done! (3 subtractions, so 15 +5=3)

Why This Matters

You've just taught your B4 how to think backwards. With addition and subtraction in its
toolkit, it’s ready for more advanced calculations — and you now understand a trick that’s
been hiding inside every computer for decades.

Checkpoint
Challenges 3

Compute with your B4 and also on paper:

5 minus 2

10 minus O

15 minus 15

2 minus 3. What do you see?

B4 Spark Mission Guide, Revision 1.0.2

27

Mission 4 — The B4 Learns to Remember

Objective

Give your B4 a short-term memory so it can temporarily store information while working
on a problem. You’ll meet the Latch and discover how it works alongside the clock
signal.

The Story

Your B4 can now add and subtract, but it’s got a big limitation — it can only work with
the two numbers you give it right now. The moment you change one of them, the old
number is gone forever.

Humans have the same problem when we try to calculate something without
remembering the intermediate result. Imagine working out 3 + 8 + 1 without
remembering that 3 + 8 = 11 — you’d have to start over every time.

Computers solve this problem with short-term memory. On the B4, this role is played by
the Latch. The Latch can grab a number from its input and hold onto it until told to let go.

Step 1 — Meet the Latch

The Latch is like a tiny 4-room storage locker — one bit per room. When it gets an
activation signal (from the clock), it takes whatever’s at its input and locks it in. Until it
gets another activation signal, it won’t change, even if the input changes.

You'll need:
* Program Counter (for power)
« Variable module
* Latch

Set up the modules as in the diagram for Mission 4. Connect a control wire from the
Latch’s CLK input pin to GND so it isn’t activated yet.

28 B4 Spark Mission Guide, Revision 1.0.2

Setup of Mission 4, First Memory Test

1. Set the Variable to 0011 (decimal 3).
2. Look at the Latch’s LEDs — nothing changes.

Why? Because the Latch is waiting for its “remember now” signal.

Why this doesn’t work

The Latch is waiting for an activation signal. This is really important, as we need to tell
the Latch when it should remember something.

B4 Spark Mission Guide, Revision 1.0.2 29

Move the control wire from GND to +5V as shown in the next figure. The Latch now
receives an activation signal.

The LEDs on the Latch will instantly match the Variable — it has stored 0011.

Setup of Mission 4, Triggering Memory

Why this works

The Latch has received an activation signal. This causes it to remember the data at its
input port.

While keeping the control wire on +5V, change the Variable to 0100 (decimal 4).

The Latch stays on 0011.

30 B4 Spark Mission Guide, Revision 1.0.2

How this works

The Latch will only look at the data on its input side when CLK changes from LOW to
HIGH, or from 0 Volt to 5 Volt.

Step 6 — Changing Memory

Disconnect the control wire from +5V, then reconnect it. This creates a manual clock
pulse.

Now the Latch updates to match the Variable’s new value. This works — but in a real
computer, constantly unplugging and reconnecting wires is not practical.

Planning for the next step

By disconnecting and re-connecting the wire we have made our own CLK signal. This is
nice, but a bit impractical for a real computer as we don’t want to always plug wires in or
out. Do you remember from mission 1, that one of the functions of the Program Counter
is the production of the CLK Signal?

Step 7 — Automatic Memory

Connect the Latch’s CLK In pin to the CLK output on the Program Counter, as shown in
the next figure.

Now, every time you press Enter on the Program Counter, it automatically sends a clock
pulse that tells the Latch to store the current value from the Variable.

Try it:
1. Set the Variable to 1000 (decimal 8).
2. Press Enter on the Program Counter.
3. The Latch updates to 1000 automatically.

B4 Spark Mission Guide, Revision 1.0.2 31

Setup of Mission 4, Automatic Memory

Why This Matters

With a Latch, your B4 can remember results from one calculation and use them in the
next. This is essential for adding more than two numbers, avoiding infinite loops, and
building more complex programs.

We have just found an automatic way to activate the Latch. This will become very useful,
as you will see in mission 7.

32 B4 Spark Mission Guide, Revision 1.0.2

Mission 5 — The B4 Builds Its Memory Tower

Objective

Upgrade your B4’s memory from short-term storage to long-term storage using the Data
RAM. You'll learn how to store data permanently (until the power is turned off) and how
the Program Counter acts like an elevator to place data on the correct “floor.”

In the last mission, you gave your B4 short-term memory with the Latch — handy for
holding onto information for a moment, but easily overwritten. If you want the B4 to
remember something for the whole program (or until it’s powered down), you need long-
term memory. We call this Random Access Memory (RAM).

Step 1 — Meet the Data RAM

Think of the Data RAM as a tall apartment building with 16 floors. Each floor has 4
rooms (bits), and each room can hold either a 0 or a 1. You can store any 4-bit number
(0—15 in decimal) on any floor you like. The Program Counter is like the building’s
elevator, moving up floor by floor to deliver or collect data. We also call the floor an
address. To store data into the Data RAM Module, we first let the Program Counter tell
it on which floor we want our data to be stored. Then, we give it 4 bits of data and finally
tell it to actually store it.

Floor 15

Floor 14

Floor 13

Floor 12

Floor 11

Floor 10

Floor 9

Floor 8

Floor 7

Floor 6

Floor 5

Floor 4

Floor 3

Floor 2

Floor 1

Floor 0 Program Direction
Data RAM: 16x 4 bit.

B4 Spark Mission Guide, Revision 1.0.2 33

Step 2 - Building the Long-Term Memory Circuit

You'll need:
+ Program Counter
+ Data RAM

« Variable module

Connect them as in the diagram:

1) Variable Out — Data In on the Data RAM (this delivers the data to store).

2) Write button on the Variable = Write Data RAM In on the Data RAM (this is the “store
now” command).

The Program Counter is already connected to the Data RAM and automatically tells it
the address. This is hardwired on the B4’s printed circuit board.

Setup of Mission 5

34 B4 Spark Mission Guide, Revision 1.0.2

Step 3 — Storing Your First Data

1) Press Reset on the Program Counter to go to address 0 (0000).

2) Set the Variable to 1010 (decimal 10).

3) Press the button on the Variable — the Data RAM’s LEDs will now show 1010 at
address 0.

4) Press Enter on the Program Counter to move to address 1 (0001).

5) Change the Variable to 0101 (decimal 5).

6) Press the Variable’s button again to store it on address 1.

Step 4 — Testing the Memory

Change the Variable to something random — the Data RAM doesn’t change unless you
press the write button.

Why? Because the Write signal is like the “save” button — without it, the RAM ignores
whatever is on its input.

Step 5 — How the Elevator Works

Remember from Mission 1 that the Program Counter counts from 0 to 15. Conveniently,
the Data RAM has exactly 16 floors — so the Program Counter can address every
single one, floor by floor. When you get to floor 15 (1111) and press Enter, it loops back
to floor O.

The Variable can do two things:

a) On it, we will generate the data we want to store in the Data RAM module, and

b) Send a ‘Store’ command to the Data RAM module when we press the button on the
Variable. The data RAM then stores the data from the Variable, to the floor that the
program counter indicates.

During programming and operation of
the B4, ensure that the Program
Counter remains powered and that
the Data RAM and the Program RAM

modules remain connected to power,
too. This ensures that the RAM
modules don’t forget their data.

B4 Spark Mission Guide, Revision 1.0.2 35

Step 6 — Clearing Memory

To erase the Data RAM:
1. Set the Variable to 0000.
2. Go to floor 0 and press the Variable’s button to store.
3. Press Enter to go to the next floor.
4. Repeat steps 2-4 you’re back at floor 0.

Congratulations — you’ve just run your first loop algorithm: “repeat until done.”

Random Data Mystery

You have probably noticed that there is all sorts of data in the Data RAM that you have
not stored there. Where does it come from? The Data RAM consists of hundreds of tiny
little switches. When the Data RAM is powered up, some of them are randomly open
and some of them are randomly closed. That’s not a problem. We simply clear the
memory cells, as we have shown.

Checkpoint
Challenges 5.1

Store the number 0111 (decimal 7) on
floor 5. Move away and come back to
check it. Does it remain?

If you wanted to store a high score in a
game, would you use a Latch or the Data
RAM? Why?

[} If you wanted to store the value O on floor
0, value 1 on floor 1 ... until the value 15
on flor 15, how would you do this
automatically, just using the Ptrogram
Counter and the Data Ram Module?

36 B4 Spark Mission Guide, Revision 1.0.2

Mission 6 — The B4 Learns to Route Traffic

Objective

Teach your B4 to choose which data stream gets through. You'll use the Selector (a
2-to-1 multiplexer, or MUX) to steer data from one of two sources to a single destination.

The Story

Your B4 now has a heartbeat, can add and subtract, and can remember. But there’s a
new problem: sometimes two parts want to speak at once. If both signals rush down the
same lane, you get a pile-up. Real computers solve this with a traffic controller that
opens one lane and closes the other at exactly the right time.

On the B4, that controller is the Selector. Flip its control line one way, and it forwards
Input A; flip it the other, and it forwards Input B. This seems small, but it’'s how
computers make decisions about where data goes next.

Step 1 — Meet the Selector

Think of the Selector as a guarded gate with two entrances (left and right inputs) and
one exit (the output). A single control wire tells the guard which entrance to open:

* Control HIGH — pass Input A (left side)
« Control LOW — pass Input B (right side)

(Your board’s silk and LED label show which side is active; follow the icon/LED on your
module.)

Tip: Engineers call this device a multiplexer or MUX. You’ve just met one of the most
common building blocks in digital design.

You'll need:
+ Selector module
+ Two Variable modules (to act as two different data sources)

Wire it up:
1. Plug each Variable output into one of the Selector’s two inputs.
2. Connect a 1-pin control wire from the Selector’s Select pin to GND first (we’ll flip it
later).
3. Ensure power is connected to the Variables.

B4 Spark Mission Guide, Revision 1.0.2 37

Setup of Mission 6

Step 3 — Try Routing Data

—

. Set the left Variable to a pattern you’ll recognise (e.g., 1010).

2. Set the right Variable to a different pattern (e.g., 0101).

3. With Select = GND, check the Selector’s LEDs: you should see the right Variable’s
pattern at the Selector’s output.

4. Move the Select wire from GND to +5V and watch the Selector’s output switch to the
left Variable’s pattern.

5. Flip the Select line back and forth a few times. The Selector’s output should cleanly

toggle between A and B every time.

What you’ve learned: one tiny control bit decides which whole 4-bit value gets through.
That’s powerful.

Step 4 — Why This Matters

Right now your Selector is choosing between two Variables, but soon it will choose

between the Adder’s output and Data RAM. That choice is how a computer decides
whether to:

+ reuse a fresh result from the ALU (Adder), or
+ fetch a stored value from memory.

That’s the secret of “dataflow”: choosing the right lane at the right moment.

38 B4 Spark Mission Guide, Revision 1.0.2

Mission 7a — Adding Three Numbers by Hand (with a Memory Boost)

Objective

Use the Latch to store an intermediate sum so you can reuse one of the Variables to
enter a third number.

The Story

Your B4 can add two numbers easily — but what if you want to add three? With only two
Variables, you can’t feed all three numbers in at once.

The trick is to do the first addition, store the result in short-term memory (the Latch),
then reuse one of the Variables for the third number. This means you, the operator, will
act as the “data transfer system” — reading the value from the Latch and manually
setting it on a Variable.

It’s not glamorous, but it works — and it’s exactly how early computers were tested by
engineers before everything was automated.

Analyse

The aim is to add three numbers. 1, 2 and 4

We can express this as a mathematical equation in the form: 1 + 2 + 4 = end result
1 + 2 + 4 is the same as first calculating 1 + 2 and then adding 4 in a second step.
We therefore decompose the addition of three numbers into two additions of two

numbers each:

1 + 2 = 3 (first sum)
3 +4 =7 (end result)

And as we know, the Adder module can handle two inputs — sweet!

You'll need:
+ Program Counter (for power and clock)
+ Adder
+ Latch

+ Two Variable modules
+ (Optional) Decimal Display

Connections:
1. Left Variable — left Adder input
2. Right Variable — right Adder input
3. Adder output — Latch input
4. Latch CLK In = Program Counter CLK output (so pressing Enter stores the Adder
output)

B4 Spark Mission Guide, Revision 1.0.2 39

Setup of Mission 7a

Step 2 - First Addition (1 + 2)

Set the left Variable to 1 (your first number).

Set the right Variable to 2 (your second number).

Press Enter on the Program Counter — the Latch stores the sum 3 (1 + 2).
Check the LEDs on the Latch — this is your first sum

R A\

Step 3 — Second Addition (3 + 4)

1. Decide which Variable you’ll reuse (often the right one is easiest).

2. Look at the LEDs on the Latch and set the chosen Variable to exactly the same
pattern — you’ve now “copied” 3 into that Variable.

3. Change the other Variable to 4 (your third number).

4. The Adder now displays 0111 (7) — the sum of all three numbers.

Step 4 — Why This Matters

This method teaches the key principle of storing and reusing intermediate results —
something every CPU does constantly. You’ve done the “data transfer” step manually
here, but in the next mission, we’ll make the B4 do it automatically using the Selector.

40 B4 Spark Mission Guide, Revision 1.0.2

Checkpoint
Challenges 7a

Try 2+6+7. What's the final result?

What happens if you forget to store the
first sum in the Latch before changing a
Variable?

Could you extend this method to add four
numbers? How?

B4 Spark Mission Guide, Revision 1.0.2

41

Mission 7b — Automating the Third Number (No More Manual Copying)

Objective

In 7a, you copied the intermediate result from the Latch into a Variable. Since computers
are all about automation, we now want to instead use the Selector to bring the
intermediate result from the Latch to the Adder.

The Story

In Mission 7a, you acted as the “data courier” — reading the value from the Latch and
copying it by hand into a Variable. That worked, but it was slow, clumsy, and error-prone.

Real computers don’t rely on humans to shuffle data around. They use circuits that
make those decisions automatically, switching data paths at the right moment. On the
B4, the Selector is that circuit.

By combining the Selector with the Latch, your B4 can now add three numbers

smoothly: first add 1 and 2, store the result (3) in the Latch, then route 3 automatically
back into the Adder to add 4, which comes from the left Variable.

You'll need:
+ Program Counter (for power and clock)
+ Adder
+ Latch
+ Selector

+ Two Variable modules
+ (Optional) Decimal Display

Connections:
1. Left Variable — left Adder input
Selector output — right Adder input
Right Variable — right Selector Input
Latch output — left Selector input
Adder output — Latch input
Latch CLK In = Program Counter CLK (so Enter stores the Adder output)
Selector Select control:
« Select = HIGH — The output of the Latch is connected to the Adder.
* Select = LOW — Adder takes the right Variable.

NO O ALD

42 B4 Spark Mission Guide, Revision 1.0.2

5 5
= =1
Y Y
o o
] @

Setup of Mission 7b

Again, we try to compute 1+2+4:

1. Set the left Variable to 1 (your first number).

2.

3. The value of the left Variable goes directly to the Adder (left input port). The value of
4,
5. Check the LEDs on the Latch — this is your first sum.

Set the right Variable to 2 (your second number).

the right Variable travels via the Selector to the right input port input of the Adder
Press Enter on the Program Counter — the Latch stores the sum 3 (1 + 2).

. Move the Select wire from GND to +5V and watch the Selector’s output switch to the

w

the same number that the Latch holds. (3). The Selector is now providing 3 to the
right port of the Adder.

Change the left Variable to 0100 (4) (your third number).

The Adder now displays 0111 (7) — the sum of all three numbers.

B4 Spark Mission Guide, Revision 1.0.2 43

Step 4 — Why This Matters

This is your first taste of automation. You'’ve stopped doing the busywork yourself and let
the B4 manage its own dataflow. Modern CPUs are full of circuits like the Selector,
automatically choosing which path data should take at each clock cycle.

With this, your B4 can now chain calculations without you constantly re-entering values
— a huge step towards a fully programmable computer. But we still needed to move that
Selector wire and enter the data into the variables.

As we will see in the next mission, the Latch remembers the output of the Adder at every
clock cycle. The programs that we will write can load data from RAM, write Data back
and control the flow of data with the Selector. Adding and latching will be done
automatically. You can compare this to your body. Your cells also work automatically -
your brain does not need to instruct them. That’s a bit of a generalisation, but you get
the picture.

Controlling the flow of data is at the heart of every computer. In this mission, we have
learned that we can add more than two numbers by using the Selector and the Latch.
The Selector helps us to switch the output of the Latch into the next addition cycle,
whilst the Latch remembers the intermediate result. This works not only for three
numbers, but also for five, six, or any number of numbers we want to add.

For example the addition of 4 numbers can be broken down into three additions of two
numbers each:

A+B+C+D

Step 1: A+B=E
Step 2: E+C=F
Step 3: F+D=R

Any addition of n numbers can be broken into n-1 additions of two numbers.

We are making good progress towards a real computer. In the next mission, we will
learn how to store data and program information so that we no longer have to set data
with Variables and no longer have to change the wiring of the control signals during
calculation. The solution to both problem is, surprisingly, more memory.

Checkpoint Try adding four numbers. 1+2+4+5.
Challenges 7b

What'’s the final result?

How often do you need to move the
endpoint of the select wire?

44 B4 Spark Mission Guide, Revision 1.0.2

Mission 7c — Loading and Adding with Data RAM

Objective

Understand why numbers from RAM must be handled one at a time. Learn how to first
LOAD a number from RAM into the Latch (to park it safely), and then ADD another
number from RAM to it. This models the fundamental cycle used in real computers: load
a value into a register, then perform arithmetic on it.

The Story

In Mission 7b, you added numbers by chaining results through the Selector. That was
easy while one of the numbers sat in a Variable.

But real computers don’t work that way. Instead, all numbers live in RAM — a big row
of memory boxes, each with an address. The CPU can only open one box at a time.

So here’s the problem:
+ You can grab the first number from RAM, but as soon as you go to get the second
one, the first number is gone.
* You need somewhere to park the first number so it’s ready when the second one
arrives.

That’'s where the Latch comes in. Real CPUs do this in two clear steps:
1. LOAD — Take a number from RAM and park it in the Latch (like storing it in short-
term memory).
2. ADD — Go back to RAM, fetch the next number, and add it to the Latch.

To make this work, we change the wiring slightly:
+ The Selector now feeds the Latch.

« The Latch then feeds the Adder.

This new cycle forces us to LOAD first, then ADD — the same rhythm a CPU follows
millions of times per second. And it’s the same way you do mental arithmetic: hold the
first number in your head, then add the next one to it.

B4 Spark Mission Guide, Revision 1.0.2 45

Step 1 — Build the Circuit

—

©CONO O

You'll need:

Program Counter (for power , clock, and program step counting)
Data RAM

Adder

Latch

Selector

One Variable module (for programming the Data RAM)
(Optional) Decimal Display

Connections:

Left Variable = Data RAM input

Data RAM — left Adder input

Data RAM — left Selector input

Selector output — Latch input

Latch output — right Adder input

Adder output — right Selector input

Variable Write RAM pin = Data RAM Write pin

Latch CLK In = Program Counter CLK (so Enter stores the Selector’s output)
Selector Select control:

« Select = HIGH — The output of the Data RAM will be latched.(we start with it)
+ Select = LOW — The output of the Adder will be latched.

46

Setup of Mission 7b

B4 Spark Mission Guide, Revision 1.0.2

Again, we try to compute 1+2+4:

Step 2 — Programming the Data RAM

First, we program the values 1, 2, and 4 into our Data RAM. We’ve already learned how
to do this in Mlssion 5. Follow the steps below:

1. Set the Program Counter to 0000. That’s step 0 of our program.

2. We enter our first data. Set the Variable to 0001 and then press the button on the
Variable.

3. For our next data, we progress the Program Counter to 0001, which is step 1.

4. Then, on the Variable, enter 0010 and then press the button on the Variable.

5. Progress the Program Counter to 0010 and enter 0100 into the Variable. Click its
button to store this data into the Data RAM.

6. We clear the remaining Data RAM. Set the Program Counter to 0011, set the
Variable to 0000 and press the button on the Variable. Repeat this until the Program
Counter shows 15.

7. Press the Zero button on the Program Counter, so that the Program Counter shows
00

Step 3 — Addition (1 + 2 + 4)

1. Press Enter on the Program Counter. This loads the number 1 into the Latch.

2. Move the Select wire from +5V to GND. This makes the Slector pay attention to the
output from the Adder.

3. Press Enter on the Program Counter — the Latch stores the output 3 (1 + 2).

4. Press Enter on the Program Counter — the Latch stores the output 7 (3 + 4).

Observe how the values 1, 2, and 4 come out of the Data RAM. Other than moving the
Select wire just once (after the value 1 has been latched). We just keep pressing the Enter
button on the Program Counter, and the Adder keep adding. Wow!

Checkpoint
Challenges 7¢

You just computed 1 + 2 + 4 = 7. Now
add another number from RAM (e.g., 5).
What do you expect the new total to be?
Try it and see if your prediction was
correct.

Why do we only need to flip the Select
wire once, after the first number is loaded
B into the Latch?

In a real CPU, why is it useful to separate
the LOAD step (into a register) from the
ADD step?

B4 Spark Mission Guide, Revision 1.0.2 47

48

To see why this “Accumulator-only” approach looks tempting but ultimately fails,

A Thought Experiment...

Imagine if computer designers wanted to save a chip and just remove the
Selector. Couldn’t we just let the Latch and RAM feed the Adder directly? That
would make the wiring simpler, right?

It does work — at least at first. But as soon as we try to store results back into
RAM, things start to go wrong in surprising ways (hint: numbers can suddenly
double!).

check out Appendix D — Design Debate. There, we compare the two designs
head-to-head and show why real CPUs stick with the Selector model.

B4 Spark Mission Guide, Revision 1.0.2

Part 2 — Automation with Program RAM

In Part 2, the B4 takes its first steps away from manual
wiring and towards automation. Instead of you moving
wires, the Program RAM begins to take charge. You'll learn
how to write your first program and extend the system to
perform both addition and subtraction under program
control.

By the end of part 2, you’ll add the ability to write results
back into Data RAM so that variables can be reassigned
and reused later. This is a key milestone: your B4 is no
longer just a calculator, but a program-driven machine that
can update its own memory while running.

B4 Spark Mission Guide, Revision 1.0.2 49

Mission 8 — Automating the Selector with Program RAM

Objective

Learn how to use Program RAM to control the Selector automatically. This is the first
step toward letting the computer run instructions on its own, without you flipping
switches by hand.

The Story

In Mission 7c, you had to move the Selector yourself to choose between loading a value
from RAM or adding to the Latch. That worked, but it still needed you in the loop.

Now it’s time to let the computer take over. Real CPUs store a list of instructions in
Program RAM, and the Program Counter steps through them one by one. Each
instruction tells the computer what to do next.

Here’s the plan:
« Program RAM holds tiny “control words” (like “Selector = HIGH” or “Selector =
LOW?).
« The Program Counter moves through Program RAM automatically.
- Instead of you flipping the Selector, Program RAM tells it what to do at the right
time.

This is the beginning of true automation: the computer is no longer just a collection of
parts you control directly — it’s starting to follow a stored program.

Start with the exact same setup you built in Mission 7c. The only two changes are this:

- Take the end of the Select wire away from + 5V/GND and move it to the second
pin from the right of the Program RAM output. It is labelled as 2-To-1 Selector.

- Place the second variable to the right side of your B4. We use it to program the
Program RAM later

- Connect the right Variable to power and to the Program RAM input

+ Right Variable Write RAM pin = Program RAM Write pin

That’s it! Now Program RAM, not you, decides when the Selector switches between
LOAD and ADD.

50 B4 Spark Mission Guide, Revision 1.0.2

Setup of Mission 8

Step 2 - Programming the Data RAM

First, we program the numbers that we want to add into the Data RAM. These are the
values 1, 2, and 4. We do this exactly like in mission 7c. Flip back a couple of pages and
look it up if you have forgotten. Use the left variable to program the Data RAM

Step 3 — Programming the Program RAM

Now, using the right variable, we program a single instruction into the Program RAM.

1. Set the Program Counter to 0000. That’s step 0 of our program.

2. We enter our first instruction (LOAD). Set the Variable to 0010 and then press the
button on the Variable. 0010 means that the Program RAM’s second output port from
the right will be HIGH. And this is the port where you have attached the Select wire
from the Selector. (Code and hardware always go hand in glove)

3. We clear the remaining Program RAM. Set the Program Counter to 0001, set the
right Variable to 0000 and press the button on the right Variable. Repeat this until the
Program Counter shows 15.

4. Press the Zero button on the Program Counter, so that the PC shows 00

B4 Spark Mission Guide, Revision 1.0.2 51

Step 4 — Addition (1 + 2 + 4)

1. Press Enter on the Program Counter. This loads the number 1 into the Latch.
2. Press Enter on the Program Counter — the Latch stores the output 3 (1 + 2).
3. Press Enter on the Program Counter — the Latch stores the output 7 (3 + 4).

Observe how the values 1, 2, and 4 come out of the Data RAM. Our single LOAD
instruction at the start of the program pushes the first number (1) from the Data RAM via
the selector into the Latch. And there it waits until #ecantake-everthe-weorld the next
number (2) becomes available. We just keep pressing the Enter button on the Program

Step 5 — Why This Matters

Up until now, you were still part of the circuit — flipping the Selector at just the right time.
That worked, but a real computer can’t rely on a human to pull the levers.

By letting Program RAM control the Selector automatically, the computer is starting to
follow instructions on its own. This is the heart of the stored-program idea: instead of
wiring the computer differently for every task, we just change the program in memory.

This is what makes modern computers so powerful — they can switch from adding
numbers, to running a game, to browsing the web, all by following different instructions
stored in memory.

Checkpoint
Challenges 8
Right now, our Program RAM has just one instruction: LOAD the first
number into the Latch. After that, the Selector stays on ADD, so every
new number from Data RAM is added correctly.
But here’s the puzzle:
What would happen if you accidentally programmed two LOAD
instructions in a row at the start of Program RAM?
¢ \Would the additions still work?
e Why or why not?
So far, our computer always reuses the result from the Latch for the
. next addition. That’s why it can keep chaining numbers like 1 + 2 + 4.
But what if you wanted to do two separate additions instead? For
example:
e Add 1 + 2 (and get 3)
e Then separately add 4 + 5 (and get 9)
.~ Can you think of a way to program this so the second addition
does not reuse the first result?

52 B4 Spark Mission Guide, Revision 1.0.2

Mission 9 — Program Tables

Objective

Learn how to write programs in a clear table format, making it easier to describe, run,
and share your programs.

The Story

Up to now, we’ve been giving you programming instructions step by step: “Load this
number... now add that one...”. That works fine for short tasks, but as soon as programs
get longer, it’s easy to lose track.

This is exactly why real programmers invented notation — a structured way of writing
instructions so that other humans can follow them without confusion.

From now on, we’ll write our programs as tables. Each row shows:
- the step number,
- the value it uses from Data RAM,
« the instruction (LOAD or ADD).

Think of the table as your program’s “recipe card.” Anyone who looks at it will know
which value needs to go into which RAM module, at which program step.

If we put the Data RAM and the Program RAM side by side and label their respective bits,
we can draw a table like the one below to express the program 1+ 2

Data RAM Program RAM
bit # 3 2 1 0 A|lB|C|D
Step 15
Step 14
Step 13
Step 12
Step 11
Step 10
Step 9
Step 8
Step 7
Step 6
Step 5
Step 4
Step 3
Step 2
Step 1 0 0 1 0 0|10 0 0
Step 0 0 0 0 1 0| O 1 0

B4 Spark Mission Guide, Revision 1.0.2 53

You already know from Mission 8 that the Program RAM’s 2nd output pin from the right
controls the Selector. Let’s update our table and name this SEL (for select). While we're at
it, we add a comments column — adding comments is a good practice that software
engineers follow! Since there are so many empty rows, we collapse them to save space.

Here is the revised table for a program that computes 1+ 2.

Data RAM Program RAM Comment

Step# | 3| 2|1 |of A | B |SEL| D

Steps 2-15 | 0 0 0 0 0 0 0 0 do nothing

Step 1 0 0 1 0 0 0 0 0 Send 0010 to the Adder,
which adds it to the 0001
stored in the Latch.

Step 0 0 0 0 1 0 0 1 0 Load 0001 from the Data
RAM into the Latch. This is
the first number for the Adder

Just so that we don'’t forget, let’s start a little table to help us remember how select works.

Bit 1 (SEL)
Name Select
When it’s 1... Selector takes input from Data RAM
When it’s O... Selector takes input from Adder
Checkpoint
Challenges 9
So far, we've shown you how to write the program for 1 + 2 in table
form. Now it's your turn!
Create a Program Table for the addition 3 + 4.
e Fill in the Data RAM values.
¢ Decide what the Program RAM’s SEL bit should be for each step.
¢ Write a short comment for each row explaining what happens.
u Bonus: Can you extend your table so that the computer first calculates
1 + 2, and then separately calculates 3 + 4 (two additions, not chained
together)?

Your computer just learned how to follow a recipe card — the program table — and it
can already add numbers all on its own. But every great computer has more tricks up its
sleeve. In the next missions, we’ll teach it two powerful new skills: first, how to work the
Inverter so it can subtract as well as add, and then how to write results back into Data
RAM so it can remember answers for later. Step by step, you’re unlocking the CPU’s
secret language.

54 B4 Spark Mission Guide, Revision 1.0.2

Mission 10 — Subtraction with the Inverter

Objective

Extend your program table so the Program RAM can control the Inverter. This allows
your computer to perform subtraction automatically.

The Story

Back in Mission 3, you used the Inverter to flip every bit of a number. On its own, that
didn’t feel very useful. But here’s the twist: when you combine inversion with a +1 signal
into the Adder, subtraction becomes possible.

This is how real computers do it. They don’t have a separate “subtract” circuit —
instead, they turn subtraction into addition by cleverly inverting one number and adding
1. It’s called two’s complement arithmetic.

To make this work, we extend the wiring:
+ Place the Inverter between the Data RAM and the Adder.
- Connect a new control wire from the Program RAM to the Inverter.
- Use the Inverter’s +1 output to feed into the Adder’s carry-in pin.

Now, when the Program RAM sets the SUB bit high, the Inverter flips the number and

sends the +1 into the Adder. If SUB is low, nothing changes and the Adder just adds
normally.

Start with your Mission 8 build

« Insert the Inverter between Data RAM and Adder.

« Run a new 1-pin wire from the Program RAM’s leftmost output pin (SUBTRACT) to
the Inverter’s control input.

 WIth another 1-pin wire, connect the Inverter’s SUBTRACT pin to the Adder’s
SUBTRACT pin.

That’s it! Now Program RAM decides when the Inverter switches between addition and
subtraction.

B4 Spark Mission Guide, Revision 1.0.2 55

Setup of Mission 8

Step 2 - Designing our program.

Let’s say we wanted to compute 8 + 4 - 2. How could our program look like?

Data RAM Program RAM Comment

Step # 3 2 1 0 sSuB B SEL D

Steps 3-15 | 0 0 0

o
o
o

0 0 do nothing

o
—
o

0 0 Activates the Inverter. Sends
the binary complement 1101
to the Adder. Result =10

Step 2 0 0 1

Step 1 0 1 0 0 0 0 0 0 Send 4 to the Adder, which
adds it to the 8 stored in the
Latch. Result =12

Step 0 1 0 0 0 0 0 1 0 Load 8 from the Data RAM
into the Latch. This is the first
number for the adder

56 B4 Spark Mission Guide, Revision 1.0.2

Step 3 — Programming the Data and Program RAM

Just like in Mission 8, you need to load both your Data RAM and Program RAM before
running.

. Set the Program Counter to 0.

Use the left Variable to set a value for the Data RAM, and the right Variable for the
Program RAM.

3. For each value:

« Push the Variable’s button to transfer its value into the RAM module.

- Then press Enter on the Program Counter to move to the next step.

Repeat this process — set values, push the buttons, press Enter — until your whole
program and data are entered.

N —

»

Step 4 — Running 8 +4 -2

1. Press Enter on the Program Counter. This loads the number 8 into the Latch.
2. Press Enter on the Program Counter — the Latch stores the output 12 (8 + 4).
3. Press Enter on the Program Counter — the Latch stores the output 10 (12-2).

Observe how the values 8, 4, and 2 are read out of the Data RAM.

- The single LOAD instruction at the start pushes the first number (8) through the
Selector into the Latch, where it waits.

« Next, the second number (4) arrives, and the Adder combines it with the latched
value.

« Now comes the interesting part: in program step 2, the Program RAM activates
the Inverter. This flips the third number from 0010 (2) into 1101 — the two’s
complement representation of —2.

Step 5 — Why This Matters

Back in Mission 8, you saw how the Program RAM could control the Selector, saving
you from manually moving wires each time. In this mission, the same idea is extended:
the Program RAM now controls the Inverter as well.

This means subtraction no longer requires you to unplug wires or reroute signals by
hand — the Program RAM does it automatically at the right moment. Imagine if you had
to flip the Inverter wire by hand every time — your program would grind to a halt.

Each new control wire you connect gives the Program RAM more “power” to manage
the circuit, turning your setup into something closer to a real CPU.

B4 Spark Mission Guide, Revision 1.0.2 57

Let’s just update our Program RAM cheat sheet table to help us remember.
« Bit 3 (SUB): Decides whether the Adder adds (0) or subtracts (1).

That’s all you need for now — no need to memorise, just check the table when you're
writing your programs. In the next mission, we will discover what Bit 2 does.

Bit 3 (SUB) Bit 2 (?) Bit 1 (SEL) Bit 0 (?)
Name Subtract ? Select ?
When it’s 1... The Inverteris | ? Selector takes | ?
active — Adder input from Data
subtracts RAM
When it’s O... Adder adds ? Selector takes | ?
input from
Adder
Checkpoint
Challenges
10
Your current program shows how subtraction works with
the Inverter. Now, change it to calculate 11 -3 - 2.
Imagine you didn’t have Program RAM. Which wire would
you have to manually move in order to make the
subtraction work? Why is letting Program RAM handle this
u better?

58 B4 Spark Mission Guide, Revision 1.0.2

Mission 11 — Storing Calculation Results in the Data RAM

Objective

Learn how to let Program RAM control writing into Data RAM. This allows the computer
to store results permanently in memory, so variables can be assigned and re-assigned
with new values from calculations — just as you would expect when programming.

The Story

Up to now, your computer could only hold results temporarily in the Latch. That was fine
for the very last answer, but as soon as the next operation ran, the old result was gone.
The Program Counter only moves forward, so once you’ve lost a value, you can’t get it
back.

But when we write programs, we expect something more powerful:

- Variables can change. A value can be updated by a calculation and then reused
later.

- Results can be kept. Once you compute an answer, it doesn’t vanish — it’s stored
for the next steps.

Think of a game score: every time you earn points, the computer adds to the score and
then stores the new value back into memory. Or imagine a bank balance: when you
spend or deposit money, the balance gets recalculated and re-assigned with the
updated amount.

This is where writing back to Data RAM becomes important. By saving results into
memory, your computer can keep them instead of losing them. That’s a big difference
between a simple calculator and a real computer:

« A calculator only ever shows the latest answer.
« A computer can store, update, and reuse answers in memory as the program
runs.

In this mission, you’ll take the next step and give your B4 the ability to write results back
into Data RAM automatically during runtime. This is the final ingredient that starts to
make your B4 behave like a true CPU.

Use your Mission 10 build.

We wanted to compute 8 + 4 - 2 and store the result (10) into the Data RAM. We re-use
the program from Mission 10 and add Step 3.
0100 is the code to write to the Data RAM. We call it WRT.

B4 Spark Mission Guide, Revision 1.0.2 59

Data RAM Program RAM Comment
Step # 3 2 1 0 SUB | WRT | SEL D
Steps 4-15 | 0 0 0 0 0 0 0 0 do nothing

Step 3 0 0 0 0 0 1 0 0 Stores the contents of the
Latch in the Data RAM

Step 2 0 0 1 0 1 0 0 0 Activates the Inverter. Sends
the binary complement 1101
to the Adder. Result = 10.

Step 1 0 1 0 0 0 0 0 0 Send 4 to the Adder, which
adds it to the 8 stored in the
Latch. Result = 12

Step 0 1 0 0 0 0 0 1 0 Load 8 from the Data RAM
into the Latch. This is the first
number for the adder

Step 3 — Programming the Data and Program RAM

Just like in Mission 10, you need to load both your Data RAM and Program RAM before
running. If you have forgotten, skip back to Mission 10 and look up the programming
instructions

I Step 4 — . Re-wiring for Runtime !!!

Once you've finished programming the Data RAM and Program RAM (just like in earlier
missions), it’s time to prepare the computer for runtime. We hand over the data and
control paths from the left Variable to the Latch and the Program RAM. The Data RAM
will take its data input from the Latch, and the WRT command will come from the
Program RAM.

Follow these steps carefully:

1. Reset the Program Counter to O.
2. Remove the left Variable from the Data RAM module. Unplug the 4-pin and 1-pin
wires that connect the Variable and the Data RAM.
3. Connect the Latch to the Data RAM.
+ Use a 4-pin wire to connect the Latch’s output to the Data RAM’s input.
4. Connect the Program RAM to the Data RAM’s write pin.
« Use a 1-pin wire from the 2nd left Program RAM output (labelled
WRITE_DATA_RAM) to the Write-pin on the Data RAM.
« This lets the Program RAM decide when to store a new value in memory.
5. Connect a 1-pin wire from the Program Counter’s |CLK+5 pin to the !CLK pin of the
Program RAM
- This enables the Program RAM to communicate with the Data RAM.

Now your computer is ready to execute the program with the new wiring in place.

Yes, unplugging and re-plugging wires feels clunky — but don’t worry, in the next mission
we’ll add the Automatic Programmer to get rid of this step.

60 B4 Spark Mission Guide, Revision 1.0.2

Setup of Mission 11 (Runtime)

Step 5 — Running 8 +4 -2 + WRT

Press Enter on the Program Counter. This loads the number 8 into the Latch.
Press Enter on the Program Counter — the Latch stores the output 12 (8 + 4).
Press Enter on the Program Counter — the Latch stores the output 10 (12 - 2).
Press Enter on the Program Counter — the Data RAM stores the contents of the
Latch, 10.

poN =

Observe how the Data RAM holds 1010 at the end of the program.

Step 6 — Why This Matters

With Program RAM now in charge of the write line, your B4 can save values from the
Latch back into Data RAM — automatically, without you moving wires. This step turns
the B4 from a “one-shot calculator” into a true computer that can remember its own
results.

Let’s just update our Program RAM cheat sheet table to help us remember.

B4 Spark Mission Guide, Revision 1.0.2 61

« Bit 2 (WRT): Decides whether to write the current Latch value into Data RAM (1) or
not (0).
Bit 3 (SUB) Bit 2 (WRT) Bit 1 (SEL) Bit O (free)

Name Subtract Write Select (free)

When it’s 1... The Inverter is | Store the Latch | Selector takes | Reserved for
active — Adder | value in Data input from Data | student
subtracts RAM RAM extensions

When it’s O... Adder adds No write into Selector takes | Not used (for

Data RAM input from now)
Adder
Checkpoint
Challenges

11

Program the Data RAM so the computer calculates 6 + 3
and stores the result in Data RAM.

¢ Which step should WRT be set to 17

¢ What value ends up in the RAM at that step’s

address?

m Run your program with WRT = 0 for every step.
e What changes in Data RAM?
¢ What does this tell you about the role of WRT?

62

B4 Spark Mission Guide, Revision 1.0.2

LL| Here’s a question: How does Program RAM tell the hardware what to do?

The answer: each bit in Program RAM has a special meaning. These bits control
different parts of the computer through the 1-pin wires we attach to them. When we say
that a bitis 1, or HIGH, it means there is a voltage pushing electrons through a wire. We
call this a current. This means that tiny amounts of electricity flow through the computer to
switch different components on and off as needed.

- Bit3 - SUB
If this bit is 1, the Inverter is switched on. That makes the Adder perform subtraction
instead of addition.

- Bit2 - WRT
If this bit is 1, data is written back into Data RAM.

- Bit1 = SEL
If this bit is 1, the Selector points to Data RAM. If it’s 0, it points to the Latch/Adder.
(You've already used this signal in Mission 7!)

 Bit 0 — Extension
This one is left for you! You can later extend the B4 with your own instruction. For now,
we won’t use it.

Together, these bits form what we call instruction codes (or operation codes, shortened

to opcodes). They tell the computer what action to perform at each step. Every computer
processor has different opcodes. The next table summarises them for our B4 CPU.

B4 Opcodes at a Glance

Bit 3 (SUB) Bit 2 (WRT) Bit 1 (SEL) Bit O (free)

Name Subtract Write Select (free)

When it's 1... The Inverter is | Store the Latch | Selector takes | Reserved for
active — Adder | value in Data input from Data | student
subtracts RAM RAM extensions

When it’s O... Adder adds No write into Selector takes | Not used (for

Data RAM input from now)
Adder

? But what about the Latch and Adder?

« We don’t need a special opcode for the Latch. It always stores its input whenever the
Clock (CLK) ticks, which happens automatically when the Program Counter
advances.

« We don’t need an opcode for the Adder either. The Adder is always “on” — it

continuously adds whatever data it receives. The only decision we need to make is:
do we use its output or not? That’s exactly what the SEL signal controls.

B4 Spark Mission Guide, Revision 1.0.2 63

LL| Here’s another question: Why does everything work in just the right order?

When our program stores a result back into Data RAM, how do we make sure the
calculation is finished first? If the computer tried to write back too early, it could end up
saving the wrong value — or even nonsense!

This is where timing becomes critical. Different parts of the computer need to act in a
specific order:

- The Data RAM must put its value on the wire before the Latch can store it.

« The Latch must capture the result before the Data RAM is told to write it back.

So how does the B4 keep everything in sync?

CLK and !CLK Signals

The Program Counter doesn'’t just create one clock “tick.” It also creates slightly delayed
and inverted versions of that tick. These are labelled CLK+1 ... CLK+5 and |CLK+1 ... !
CLK+5.

Here’s how it works:
« When you press Enter, the Program Counter sends a CLK signal, just like in Mission1.
- A simple circuit called an inverter flips this into a !CLK signal.
- Because inverters take a tiny moment (about 5 nanoseconds) to react, the |CLK
version is slightly delayed. By chaining more inverters, we can get |CLK+5, which
happens a little later still.

This gives us fine control over when each module “listens.”

CLK and ICLK Delay Chain

To delay and invert a signal, we require a circuit. It inverts a 1 signal into a 0 signal and a 0
signal into 1.

", Putting It Together Fun fact: The
speed of light
We found the B4 runs smoothly when: is
- The Latch is triggered by CLK (so it captures data right away). approximately
- The Program RAM is triggered by ICLK+5 (a later moment), so 300,000km
writing back to memory only happens after the Latch has its per second. In
result. 5ns, light
travels about
In other words: the delayed signals make sure the computer always 1.5m.

writes back after the calculation is ready, not before.

64 B4 Spark Mission Guide, Revision 1.0.2

@ Part 3 - Toward a Real CPU

In the final part, the B4 grows into a fully functioning
miniature computer. You'll introduce the Automatic
Programmer, which removes the last manual wiring steps,
and then explore how timing and synchronisation keep
everything in the right order. You’'ll also look at how higher-
level instructions are designed and even try out cyber
security experiments that reveal what happens when
systems are pushed in unintended ways.

By the end of Part 3, your B4 won't just look like a toy
computer — it will behave like a true CPU, giving you a
hands-on understanding of how every computer you use

really works.

B4 Spark Mission Guide, Revision 1.0.2 65

Mission 12: Automatic Programming

You will probably agree that entering data and program code into the B4 isn’t very
convenient. In the previous experiments, we have used the Variable modules to get an
understanding of coding on the lowest possible level. To make the programming process
more elegant, we will introduce the Automatic Programming (AP) shield. The AP can take
full control of the B4 during the programming phase, so as to avoid that, for example, data
from the Latch gets written to the Data RAM accidentally. However, the AP will sit quietly in
the background and not interfere with the B4 while the B4 runs a program. In a sense, the
AP is a hacking device. All this has to be achieved without moving a single wire between
programming mode and runtime mode.

To get it to work, you need:

1) An Arduino Uno or compatible and a USB cable that fits into the Arduino. You find both
in the Master Programmer Kit.

2) The B4 Automatic Programmer Shield

3) The setup from experiment 11.

4) A Laptop or PC with the Arduino IDE

5) The B4 Arduino Library, available from http://www.digital-technologies.institute/
downloads

Step 1: Installing the Automatic Programmer

Plug the Automatic Programmer shield into the Arduino as shown in the following picture:

Installing the Automatic Programmer Shield on an Arduino

66 B4 Spark Mission Guide, Revision 1.0.2

http://www.digital-technologies.institute/downloads
http://www.digital-technologies.institute/downloads

Step 2: Modules and their Wiring

Place the Automatic Programmer at the bottom of the B4. Because of the complexity of the
Setup of this mission, we do it in multiple stages:

Stage 1: Modules and Power Wires:

First, let’s arrange the modules as shown below. Then, connect the power wire as shown.
You will need to run a wire to the Automatic Programmer to supply it with electricity.

- e
~
aslalas EEEm
™
TEE T
- n

Setup of Mission 12:Power Wiring only

B4 Spark Mission Guide, Revision 1.0.2 67

Stage 2: Data Wires

Then, we connect the data wires as shown in the following Figure. Most of the wiring will
look familiar. The significant change is that the output of the Decimal Display (which is
really the Latch content) is now routed to the Automatic Programmer. The Automatic
programmer now also controls the Data and Program Ram Modules.

Setup of Mission 12: Data Wiring only

68 B4 Spark Mission Guide, Revision 1.0.2

Stage 3: 1-Pin Control Wires:

Finally, we connect the one-pin control wires as shown in the following figure. The wiring of
the Automatic Programmer can be a bit tricky. Each control wire has a name, such as
Reset Program Counter. You will find a pin with the same name on the corresponding
board.

Setup of Mission 12:1-Pin Control Wiring only

Congratulations, we are done. This completes our hardware setup. Let’s continue with
software.

B4 Spark Mission Guide, Revision 1.0.2 69

Step 3: Installing and Configuring the Arduino IDE

Install the Arduino IDE on your laptop. If it is already installed, check the version number,
which should be 1.6.8 or higher. If you need to download the Arduino IDE, head to https:/
www.arduino.cc/en/Main/Software and follow the download and installation instructions.
Once the IDE is installed, go to the Tools Menu and select Arduino/Genuino Uno as Board.

& Arduino File Edit Sketch | Tools Help

Auto Format

Archive Sketch

Fix Encoding & Reload
Serial Monitor

Serial Plotter

WIiFi101 Firmware Updater

Board: "Arduino/Genuino Uno" > Boards Manager...
Port >

Get Board Info Arduino AVR Boards
Arduino Yudn

Programmer: "AVRISP mkil" » V Arduino/Genuino Uno

Burn Bootloader Arduino Duemilanove or Diecimila
Arduino Nano
Arduino/Genuino Mega or Mega 2560
Arduino Mega ADK
Arduino Leonardo

Arduino IDE: Selection of the Board

Then, go to the Ports submenu and select the USB port of your computer, which is
connected to your Arduino.

Step 4: Installing the B4 Arduino Library

1. Download the B4 library from http://www.digital-technologies.institute/downloads
2. Locate the folder called B4-master and rename it to B4.
3

. Then, copy it into the Libraries folder in which your Arduino Sketches reside. On
Windows and Macintosh machines, the default name of the folder is "Arduino/
libraries" and is located in your Documents folder.

Then, restart the Arduino IDE and go into the File menu.

There, select Examples, and click on B4. This will look something like in the
following figure:

ok

70 B4 Spark Mission Guide, Revision 1.0.2

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
http://www.digital-technologies.institute/downloads

@ Arduino m Edit Sketch Tools Help

New #EN
Open... #0
Open Recent >
Sketchbook >
Close #BW
Save #8S
Save As... {38S
Page Setup 3P

Print #P

Example Programs in the B4 Library

Servo
SpacebrewYun
Stepper
Temboo

TFT

WiFi

RETIRED

EEPROM
SoftwareSerial
SPI

Wire

Adafruit DotStar

Adafruit HTU21DF Library
Adafruit SI1145 Library
Adafruit_LSM303
Adafruit_NeoPixel

B4MultiplicationExtension
BlinkLED
BMP180_Breakout
Crvoto

vyvyvyyvyy vyvvyvwyy vVVYyVYyVYYVYYY

vvyvyy

Assembly_Example_1
Assembly_Example_2
Example_1
testProgram

The Library already contains a number of programs. Let’s run the testProgram first. Select

it from the menu. This will open a new window which will look like in the following figure.

) testProgram | Arduino 1.8.0

testProgram

6]

128

Finclude <B4 .h>
B4 myB4;

void setup()
{
Serial.begin(9600);
myB4 .functionTest();
¥

void loop ()
{
¥

Arduino/Genuino Uno on /dev/cuwchusbseriall420

The B4 Test Program

B4 Spark Mission Guide, Revision 1.0.2

71

You just need to click on the second button from the top " to compile the code and
upload it to the Arduino. Sit back and watch the LEDs of the B4 flashing as the program
gets uploaded.

The testProgram performs the following calculation 1+2-2+4-1+11-1+2-1, which is hiding
inside the functionTest() routine. This might appear a bit odd, but this calculation, including
a number of write commands, requires all program steps and produces a result of 15, or
binary 1111.

The program is designed to verify that the wiring is all correct. Click on the Enter button of
the Program Counter repeatedly until it displays 15. If you see the Latch also showing
1111, then you can be sure that you have wired up the B4 correctly. If not, go back to the
previous pages and double-check.

With the Automatic Programmer installed, we can load different programs really quickly. To
run the programs already included in the Arduino library, all you need to do is go into the
library as explained above and select the program you want. We will see a little later how
to design our own programs.

Now select the Example_1 program.

@ @ Example_1 | Arduino 1.8.0

Example_1
1 #include <B4.h=

i B4 myB4;
=]

8 int DataRAMContent[] = {
B0101, BA160, BOMOA, BOO1G,
BOROG, BAGOD, BOMOD, BOOOO,
BOOOG, BAGOD, BOMOD, BOOOO,
BOMOG, BOGOD, BOMOD, BOOOAO,

b

15 int ProgramRAMContent[] = {
BAG1G, BAGER, BO116, B1066,
BA116, BAGGR, BOAOA, BOAGO,
BAGRG, BAGER, BOAOA, BOAGD,
BAG0G, BAGER, BOAOA, BOAGD,

b

void setup()
233{
myB4 . loadDatasndProgran(DataRAMContent , ProgramRAMContent);
myB4 .prograng4();

28 woid loop()
2954
3}

Arduino/Genuino Uno on /dev/cuwchusbseriall420

Example_1 Program

To run this Program on the B4, click on " . When the upload is complete, you can press
the Enter button on the Program Counter.

72 B4 Spark Mission Guide, Revision 1.0.2

Let’s have a look at this program. Like the testProgram, it consists of a declaration of
myB4, which is an instance of the B4 class. Then, we have a Data block, a Program block,
a loadDataAndProgram() routine and finally a programB4() function. In the data and
program blocks, the first 4 bit data is for program step 0 and the last one for program step
15. You have probably noticed that the 4 bit binary numbers all start with a B. This is the C-
programming language way of knowing that it should deal with binary numbers. If we didn’t
declare that, then the compiler would assume that the binary number 0101 is actually one
hundred and one. This would lead to the wrong results, as we want a 5, not a 101.

Let’s explore the Data RAM Content first. There you can see the binary of the numbers 5,
4, 0, 2, and then 0s. We know that these are the numbers that we will perform some
arithmetic operations on. Let’s explore the Program RAM to find out what these are.

Take a look at ProgramRAMContent[]. The first element of the array is

B0010, which means to load data into the Latch for further programming. The second
element is BO0O0O, which loads data into the Adder. The third element, BO110, stores data
from the Latch into the Data RAM. Next, B1000 performs a subtraction and BO110 saves
the data into program RAM and keeps it latched for further use. So, we now know that the
program performs the following operations: 5+4, store the result (9), subtract 2, store the
result (7).

int DataRAMContent[] ={

B0101, BO100, BO00O, BO0O10,
B0000, BO00O, BOO0OO, BOOOO,
B0000, BO00O, BOO0OO, BO0OOO,
B0000, BO000O, BO00O, BO0OOO,

¢

int ProgramRAMContent[] ={

B0010, BO00O, B0O110, B1000,
B0110, BO00O, BO000, BOOO0O,
B0000, BO000O, B0O000, BOOO0O,
B0000, BO00O, B0O0O0O, BOOOO,

¢

Note that the positions of the elements in the arrays is important and that the indexes must
match for the program to work on the correct data. For example, the DataRAMContent[0]
is BO101, which is processed through ProgramRAMContent[0]=B0010 (LOAD).

Correspondingly, DataRAMContent[1] and ProgramRAMContent [1] form a data-
processing pair and so on and so forth. Also note that we will fill those places of the
program and data RAM that we don’t need with zeros.This is important to get the machine
in a defined state. Computer circuits can contain all sorts of random data when they get
powered up. They need to be initialised.

B4 Spark Mission Guide, Revision 1.0.2 73

In our familiar table format, the same program looks as follows:

Data RAM Program RAM Description

bit # 3|2 |1 (0]QSUB|WRT| SEL | USR

Steps5-15 (0 |0 |O

o
o

0 0 0 do nothing

1 1 0 Store the result
into the Data
RAM

Step 4 0O |0 |O

o
o

Step 3 0 0 1 0 1 0 0 0 Subtract 0010
from the contents
of the Latch by
activating the
Inverter.

Step 2 0O (0 |0 |O 0 1 1 0 Store the result
back into the
Data RAM

Step 1 0 1 0 0 0 0 0 0 Add 0100 to the
contents of the
Latch.

Load 0101 from
the Data RAM
into the Latch.
This is the first
number for the
Adder

Step 0 0 1 0

-
o
o
-
o

Example_1 program in table form

After the declaration and initialisation of the Data and Program arrays, we call the
myB4.loadDataAndProgram() function and pass along the DataRAMContent and
ProgramRAMContent arrays which we want to be stored in the Data and Program RAM
modules. As a last step, we call up the myB4.programB4() function. This is a collection of
other functions that will then perform the necessary steps to program the B4. This includes
the following functions:

void clearDataRAM();

void clearProgramRAM();
void setData();

void setProgram();

void reSetProgramCounter();
void clockCycle();

void writeRAM(int port);

void resetLatch();

The library shields these functions from the user to keep things simple. But you can
explore the C++ code behind the entire B4 library by going into the Arduino/libraries/B4
folder and have a look at the file B4.cpp with a simple text editor.

74 B4 Spark Mission Guide, Revision 1.0.2

Mission 13: Program Language Design

Now that we understand how a computer works internally with its data and opcodes we
can begin to think of a higher-level language to program the B4. Computer scientists often
speak about a higher-level language when it resembles less the computer-internal
representation, and more the way humans like to think and talk about programs and data.
Ideally, we want our computer to understand something like 5+4-2, and this is our goal. We
start with a first step by trying to make our program more compact and easier to read and
write. Admittedly, dealing with arrays of binary data and having to remember opcodes is a
bit tedious, so let’s think of a language in which we write what we want the computer to do,
on which data we want the operation to be performed. Of course, we want to express our
data in the decimal format that we are familiar with. We could, for example, express 5+4-2
as a list of the following five steps:

LOAD(5);
ADD(4);
WRT():
SUB(2);
WRT():

This is a more compact representation of the binary code representation that you are
already familiar with:

int DataRAMContent[] ={

B0101, BO100, B0O000, BOO10,
B0000, BO000O, B0O000, BOOO0O,
B0000, BO00O, B0O0O0O, BOOOO,
B0000, BO00O, B0O000, BOOOO,

¢

int ProgramRAMContent[] ={

B0010, BO00O, BO110, B1000,
B0110, BO000O, BO0O0O, BO0OOO,
B0000, BO00O, BOO0OO, BO0OOO,
B0000, BO000, BO00O, BO0OOO,

¢

Don’t you agree that our new programming language is much easier to read?

However, our B4 doesn’t yet understand what a LOAD, ADD, WRT and SUB command
means and has definitely no idea what it should do with these commands. LOAD, ADD,
WRT and SUB are called an assembly language, whilst the 0s and 1s we have been
working with so far form a machine code. Internally, the B4 can only understand machine
code.

So we need to write a program that can translate assembly to machine code. This is called
an assembler.

To write an assembler, we first match the assembly commands to the corresponding
machine code instructions. Let’s do this in the following table.

B4 Spark Mission Guide, Revision 1.0.2 75

Assembly Language Machine Code
LOAD B0010
ADD B0O00O
WRT (write) B0110
SUB (subtract) B1000

Matching Assembly Language with Machine Code

You notice that LOAD, ADD, and SUB have just one active bit, whilst WRT has two
(B0110). Technically, we could decide that WRT is BO100 as this would suffice to write
data into the Data RAM module. By activating the bit for the Selector, we apply a clever
little trick that allows us to use the result of a WRT command as input for the next
arithmetic operation.

Our assembler will perform the following steps:

1) Break the program into individual commands

2) Map the assembly commands to machine code

3) Bring the machine code into the proper sequence into the ProgramRAMContent][].

4) ldentify the data that belongs to each command (5,4,0,2,0) and copy it into the
DataRAMContent[] array.

The function that performs the above-mentioned tasks (and more) is called assembler and
is part of the B4 library. If you would like to learn more about its details, you can open the
file B4.cpp in the Arduino/libraries/B4 folder.

With this new function in place, the programming of our B4 is now significantly simplified.
As shown in the following figure, go to Examples/B4/Assembly_Example_1 in the Arduino
IDE and open it.

@ Arduino WM Edit Sketch Tools Help A

New N A

Open... #0 Servo >

Open Recent > SpacebrewYun >

Sketchbook > Stepper >

Temboo >

Close *W TFT >

Save #*S WiFi >

Save As... {+8S RETIRED >

Page Setup 0P

Print 3P EEPROM >
SoftwareSerial >
SPI >
Wire >
Adafruit DotStar >
Adafruit HTU21DF Library >
Adafruit SI1145 Library >
Adafruit_LSM303 >
Adafruit_NeoPixel >

Assembly_Example_1

B4MultiplicationExtension > Assembly_Example_2
BlinkLED > Example_1
BMP180_Breakout > testProgram
Crvoto >

Loading the Assembler Example 1 Sketch

76 B4 Spark Mission Guide, Revision 1.0.2

This will load the following Arduino sketch:

@ Arduino File Edit Sketch Tools Help
O @ Assembly_Example_1 | Arduino 1.8.0

Assembly Example_1
1 Pir'u::ll_lde <B4 .h>

i B4 myB4;
¢ String assemblyProgram = "LOAD{S);ADD{4) WRT()3SUB(2 3 WRT 3"

L ‘-,-'Dilj ZEIEftI_]p()

7B

3 Serial.begin{960@);

myB4 .0ssenb ler (assemb LyProgram);

1 myB4 .programB4{);

1y

13 ~void lcujp()

1454
5}

Arduino/Genuino Uno on fdev/cuwchusbseriall420

Assembly Example Sketch

In line 4, we declare a string, which we call assemblyProgram and fill it with our assembly
code. Each command is completed by a semicolon.

"LOAD(5);ADD(4);WRT();SUB(2);WRT();"

You may have seen this before, for example in programming languages such as C, C++ or
Java. The semicolon at the end of the line indicates the end of a command. This makes it
much easier for the assembler to distinguish individual commands from each other and
therefore translate assembly code correctly into machine code.

In line 9, we call the assembler function and pass the assemblyProgram along. Our B4
library will then perform the translation steps described above and produce the
DataRAMContent[] and ProgramRAMContent|[] arrays that you are already familiar with
from the previous pages. You don’t get to see them in this code, as they are being
generated internally in the B4 library, but you can see them and some of the internal

operation of the B4 library when you open the Arduino IDE’s Serial port monitor Q Make
sure to set the baud rate to 9,600.

The final step, as shown in line 10, is to call the programB44() function. This will perform
the necessary steps to load the contents of the DataRAMContent[] and
ProgramRAMContent[] arrays into the B4’s Data and Program RAM modules.

B4 Spark Mission Guide, Revision 1.0.2 77

Simplifying our Program

Our program contains two WRT() functions. The first one stores the result of the 5+4
operation, whilst the second one stores the final result of 5+4-2. As the B4’s Latch already
holds on the result of 5+4 it is not really necessary to store 9 in the Data RAM. We can
therefore simplify our program to:

"LOAD(5);ADD(4);SUB(2):WRT():"

Since the final result is only stored in RAM, but not being used for further arithmetic
operations, the setting of the Selector bit as part of the WRT() assembly code is irrelevant.
It can therefore be simplified to BO100. You see how simple design choices, such as
WRT() being either BO110, or BO100 are often made by the function we expect a computer
to perform.

Checkpoint
Challenges 12

If you were to design a calculator, would
you design WRT() to be BO110, or BO1007?

If WRT() were BO100 and you wanted the
B4 to run the following program
‘LOAD(5);ADD(4);WRT();SUB(2);". What
would the output of the Latch be after

n program step 3 has been executed? Why
is the result not 7?7 How can this be
explained?

Summary

In this mission, we have made a great step forward in simplifying the programming of the
B4 and the readability of the B4 programs. We have designed our own higher-level
programming assembly language and have translated the assembly code into machine
code with an assembler program that is part of the B4 Arduino library.

When writing programs for the B4, we can now deal less with the internal workings of the
computer. For example, the ADD instruction ensures that the Selector’s output is from the
Data RAM.

This mission has set the foundation for the design of compilers for other programming
languages. For example, it is conceivable to translate some simple Scratch™ code into
B4™ assembly and from there into B4 machine code. Or you could think of your very own
commands instead of LOAD, ADD, SUB and WRT, possibly in a foreign language. You
could even design your own programming language.

We would like to encourage you to explore this further.

78 B4 Spark Mission Guide, Revision 1.0.2

Mission 14: On the Role of Timing

In the previous missions, we have discussed that it is essential that the timing of the
different components is done just right, so that the B4’s modules operate in concert.

When we press the Enter button on the Program Counter, the following sequence of
events takes place. We created a small video that you can find at http://digital-
technologies.institute/videos. to watch every single step. Let’s begin:

1) The Program Counter updates its value. It adds 1 to whatever it is showing presently.

2) The CLK signal is being generated and sent to the Latch. The Latch then stores the
data from the Selector.

3) Both, Data RAM and Program RAM switch to the data referenced by the Program
Counter

4) The ICLK signal is being generated and sent to the Program RAM.

5) Where the bits are set to 1, the new output of the Program RAM activates the Inverter,
Selector, and storage into the Data RAM

6) If the WRT bit is 1, it is combined with the |CLK signal and sent to the Data RAM, which
will then store whatever data is in the Latch. On the B4, the ICLK signal is as long as
you press the Enter button. In comparison, Apple’s A9 processor has a maximum clock
rate of 1.85 GHz. There, a CLK or ICLK signal would only be 0.9 nano seconds long, or
0.000 000 000 9 seconds.

7) The output of the Data RAM is fed to the Inverter and the Selector

8) The adder adds the data from the Latch and the data from the output of the Inverter

We see that, at step 2 of a new cycle, the Latch stores the result from the arithmetic
operation of the previous cycle.

As we have seen, even a very simple computer like the B4 requires quite a bit of
coordination. You can imagine that the timing of modern processors is much more
sophisticated. Let’'s assume we have a modern smartphone with a 1GHz processor. 1GHz
means that the processor operates at 1 billion instructions per second and that one
instruction is therefore 1 billionth of a second long. The speed of light, and therefore the
speed at which electricity can travel through a wire, is approximately 300,000 km per
second, or 300,000,000 meters per second. Distance is defined as speed x time, so if we
multiply 300,000,000 m/s by 0.000 000 000 1 s, we get 30cm.

The faster our processors tick, the shorter the maximum allowable length of the wires.

That’s one of the reasons why, for example, the USB wires to external devices are never
very long. As the transfer speed increases, the length of wires decreases.

B4 Spark Mission Guide, Revision 1.0.2 79

http://digital-technologies.institute/videos
http://digital-technologies.institute/videos

Mission 15: So, how does a Computer work ... actually?

Now that you have progressed to this chapter you have learned about the different parts
that a basic computer is made of, such as an adder, inverter, latch, etc. You have also
learned that opcodes control the flow of data and activate and deactivate modules and that
they instruct the RAM to store data.

You might wonder, however, how all this is happening physically. In mission 5, where we
discussed random data, we mentioned that the RAM is made of hundreds of little switches.
The switch nature is true for all the logic chips that you find in the B4. These are the little
black boxes with legs. They look like this:

A Logic Gate Integrated Circuit

The question is: What do they do? Let’s explore this on the following pages.
Computers exist because of three major achievements:

1) Our philosophers, scientists and mathematicians have developed the concept of logic
which is the systematic study of the form of arguments.

2) Some more philosophers, scientists and mathematicians have been able to translate
really complex logic to simple yes/no decisions.

3) Our physicists and engineers have learned to design and build machines where
switches are so tiny so that millions and billions of them can be packed in tiny spaces
where they reliably and rapidly solve logic problems near light speed.

Logic and Boolean Logic

Let us consider the above points 1) and 2) a bit closer. The systematic study of logic dates
back to ancient times in China, India and Greece. One of the founding fathers of Greece
logic, which became widely used in the Western and Arabian world, was Aristoteles. He
lived in the 4th century BC. His work set the foundation of more work on logic since then,
including in the Middle Ages. In the 1850°‘s Mr. George Boole made a remarkable
breakthrough when he developed a branch of algebra in which the values of the variables
are the truth values TRUE and FALSE. In his honour, we speak of Boolean Logic.

The history of logic alone would fill many books and is outside of the scope of this
handbook, but suffice to say that today’s computing has a foundation that started some
2,500 years ago.

Let’s explore Boolean Algebra: You would be surprised to hear that just a few words in the
English language (and in most if not all other languages) are the key to modern computer
science. These are TRUE, FALSE, AND, OR, and NOT.

80 B4 Spark Mission Guide, Revision 1.0.2

Let’s take a look: If you want both, apples and bananas you would say: “ | would like
apples AND bananas”. This indicates to anyone hearing you that you want both. However,
you might be content with receiving apple or bananas, or both, then you would say “ |
would like apples OR bananas”. Your mum would then give you apples, or bananas, or
apples and bananas. Let’s assume you don’t like bananas and you want to make sure
your mum doesn’t give you bananas. Then you could say. “l would like apples but NOT
bananas”. If you wanted apples or bananas, but never both, you would say: ”l would like
either apples or bananas”

These logical operations are called AND, OR, Negation, and Exclusive OR (XOR)

“I would like ...” is a bit verbose in day to day use in mathematics and computer science,
so we can safely reduce these expressions to:

apples AND bananas
apples OR bananas
apples AND NOT bananas
apples XOR bananas

Let’s assume that you want to build a little machine that looks at the inputs to tell us
whether your request has been met, with a simple TRUE/FALSE output statement.

We can use a truth table to determine if these conditions are met. Below, we have written
the truth tables for AND, OR, AND NOT (NAND), and Exclusive OR (XOR)

apples bananas output
TRUE TRUE TRUE
TRUE FALSE FALSE
FALSE TRUE FALSE
FALSE FALSE FALSE

apples AND bananas truth table

apples bananas output
TRUE TRUE TRUE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

apples OR bananas truth table

B4 Spark Mission Guide, Revision 1.0.2

81

apples bananas output
TRUE TRUE FALSE
TRUE FALSE TRUE
FALSE TRUE FALSE
FALSE FALSE FALSE

Apples AND NOT bananas truth table

apples bananas output
TRUE TRUE FALSE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

Either Apples or bananas (XOR) truth table

A Logical Adding Machine

Let’s put our newly-acquired knowledge about logic to some good use and think about a
machine that adds two one bit binary numbers, A and B. This will result in a 2 bit number.
From now on, let’s set 1 for TRUE and 0 for FALSE so we have a little bit less to write.
How would the truth table of such a machine look like? Let’s have a look at the following
table:

A B sum
1 1 10
1 0 01
0 1 01
0 0 00

Adding two binary numbers

1+0=1 and so is 0+1. 0+0=0 and 1+1=2, which is in the binary system 10 (one zero).

We can write this a bit differently in the following form:

A B sum (higher bit) sum (lower bit)
carry over

82 B4 Spark Mission Guide, Revision 1.0.2

A B sum (higher bit) sum (lower bit)
carry over
1 0 0
0 1 0
0 0 0

Adding two binary numbers

So, the sum’s lower bit is 1 when either A OR B are 1, but not when both or none of them

is 1: So we write: AXOR B

The carry-over is only 1 when AAND B are both 1: We write AAND B

So, to add two 1 bit numbers , we need two machines: One XOR machine and one AND

machine. Let’s call these machines gates. Let’s then arrange these two machines so that
our two binary numbers A and B are connected to the inputs of the AND and XOR Gates.
Let’s then change the values of A and B and observe the sum and carry over outputs. The
following table shows the 4 possible combinations of A and B and the outputs that our

gates produce. Let’s have a look:

(Carry over [sum|

0+0=00

B4 Spark Mission Guide, Revision 1.0.2

83

carry over [sum [R

(Carry over [sum [IRECR

1+41=10

(Carryover [sum)

A Simple Adding Machine with Logic Gates

By applying Boolean logic to the problem of arithmetic, we can design a small machine
that can add two binary values. We have not yet found out how we would actually engineer

84 B4 Spark Mission Guide, Revision 1.0.2

such a machine. Let’s park the engineering issue for a moment until we have applied
Boolean logic to the issue of memory in the following section.

A Logical Memory Machine

Logic gates can not only add, but also remember. Memory, as you have seen throughout
this handbook, when we explored the Latch and RAM modules, is a fundamental function
of a computer.

To explore this further, let’s quickly expand our knowledge of the logic gates from the
previous section, where we learned about AND, OR, NOT, and XOR. If we combine OR
and NOT, we get a gate that is called NOT-OR, or, in brief, NOR. The truth table for NOR
is similar to the familiar OR truth table, with the main difference being that the output is
always negated. This means that when the OR gate produced a TRUE output, the NOR
gate produces a FALSE and when OR resulted in FALSE, then NOR will be TRUE. The
NOR truth table is shown below.

A B output
TRUE TRUE FALSE
TRUE FALSE FALSE
FALSE TRUE FALSE
FALSE FALSE TRUE

NOR truth table

We now take two NOR gates and wire them up in a way that the output of each gate is
connected to the input of the other. This, as you will see, is a common characteristic in
computers: The output of one part is the input of another, and vice versa. This is called a
feedback loop.

L 1

A Feedback Circuit with two NOR gates

B4 Spark Mission Guide, Revision 1.0.2 85

Let’s explore this circuit by playing with our input switches A and B. We start by pressing
button A.

Button A has been
pressed. NOR1
received a 1 from
buttonAand a0

A] B from NOR 2 ...
\]
g |0
..ONOR1is0,

which the NOR1
gate now gives to
the NOR2 gate ...

o
il

...ONOROIis 1,
which the NOR2
gate now gives to
the light bulb and to
the NOR1 gate ...

... and because 1
NOR 1 is 0, the
NOR1 gate does
not change its
output. The circuit
is now stable.

But what happens when we release button A? Let’s find out.

86 B4 Spark Mission Guide, Revision 1.0.2

o
il

Button A has been
released. NOR1
receives a 0 from
button Aand a 1
from gate NOR2 ...

o
il

...0NOR 1is O,
which is the same
result as 1 NOR 1
when the button A
was still pressed.
As a result, the
output of NOR1
does not change
and therefore the
output of NOR 2
stays constant as
well. The light stays
on.

B4 Spark Mission Guide, Revision 1.0.2

87

Releasing button A has no impact on the output of our circuit. It has remembered that A
has been pressed. We have just constructed a 1 bit memory cell - congratulations !

Our memory cell not only needs to remember when it was activated (1), but also when it
should reset to 0. An this is the function of button B. Let’s now explore when button B is
pressed. We continue from the previous picture.

Button B has been
pressed. NOR2
receives a 1 from
buttonBand a0
from NOR1 ...

...0ONOR1is 0,
which the NOR2
gate now gives to
the output and to
the NOR1 gate ...

..ONOROis 1,
which the NOR1
gate now gives to
the NOR2 gate ...

... and because 1
NOR 1 is 0, the
NOR2 gate does
not change its
output. The circuit
is now stable.

88 B4 Spark Mission Guide, Revision 1.0.2

Finally, we release button B. This produces the following steps

Button B has been
released. NOR2
receives a 0 from
button B and a 1
from gate NOR1 ...

..0NOR 1is 0,
which is the same
result as 1 NOR 1.
As a result, the
input of NOR2 does
not change and
therefore the output
of NOR 2 stays
constant as well.
The light stays off.

You have probably seen the similarities between switching the buttons A and B on, and
between switching them off. We can say that one gate plays the helper for the other gate
to keep it either on and off. In this relationship neither of the two gates plays any greater or
lesser role than the other gate. It is interesting to note that neither of the two NOR gates is
able to store information by itself. However, two NOR gates, properly connected with each
other has the ability to memorise information. This circuit is called a flip-flop. The first
electronic flip flop was invented by two British physicists in 1918. Since then, many
different types of flip-flops have been invented. Some of them use other gate types than
NOR, such as NAND (NOT AND) gates. However, common to all flip-flops is the feedback
characteristic between at least two gates and that flip-flops can hold a state. Some flip-
flops only require one input switch, as opposed to the two input switches that our flip-flop
uses. Our flip-flop is a SR NOR flip-flop. SR means ‘set-reset’ and denotes two inputs: one
to Set the flip-flop to an output of 1 and another to Reset the flip-flop’s output to 0. In our
SR NOR flip-flop, button A is the set button and B is the reset button.

Engineering

To this point, we have learned that we need different types of gates (AND, XOR) to make
an adding machine, and other gates (NOR) to build memory. Each of these gates can be
constructed of a cleverly-arranged set of little switches, called transistors. They have been
around since the 1920’s, but developed in earnest since the 1940’s. Transistors are
electronic switches that can be closed by applying an electric current. They can be
fabricated in semiconductor materials and can be made so tiny so that billions of them fit
on a chip the size of your fingernail. A typical AND or OR gate would require 2 transistors,
a XOR gate 6 and a NOR gate 2.

B4 Spark Mission Guide, Revision 1.0.2 89

For example, to build an AND gate, one would arrange two switches in sequence as
follows:

—0/-0—0—.—0/-0—

Realising an AND gate with two switches
The circuit can only be closed by closing the switches A and B simultaneously.

In order to make an OR Gate, we would arrange the switches in parallel, so that when
either is pressed, current can flow. This would look like this:

A

Realising an OR gate with two switches

Let’s look at a concrete example of AND and OR gates: The B4’sSelector is a set of
transistors arranged in such a way that they switch data from an input to an output. In their
on state they switch data from the Data RAM. In their off state, the data is directed from
the Adder to the output. Below, we have the logic diagram of the inside of the Selector.

Let’s take a look:

90 B4 Spark Mission Guide, Revision 1.0.2

Data RAM In

= =] 2-to-1 Select
B~E=8\E

B~B~B~B

Inside the Selector

At the top, you see four switches that represent the input from the Data RAM. At the
bottom, there are four switches representing the Adder Input. On the right, there are four
Light bulbs representing the output of the Selector. These are the same lights you see on
the Selector module. In the middle, on the left-hand side of the above figure, you see a
switch called Select. When activated, it selects the data from the Data RAM to be
channelled to the output. When in the off state, data from the Adder will reach the Output.
In between the switches and light bulbs, you see 8 AND gates and 4 OR gates = 12 gates
in total. Each gate consists of two transistors, leading to 24 transistors. There is also one
inverter consisting of 1 transistor. The entire Selector circuit, therefore, consists of 25
transistors. Try to analyse the function of this circuit. To help you, we provide one
additional screenshot with the Select switch in the off position:

B4 Spark Mission Guide, Revision 1.0.2 91

Data RAM In

= = s
O D E 2-to-1 Selector
E L] _I Output

i
L
(hm|

=

[mE]

2-to-1 Selector (Select switch off)

According to Wikipedia, the largest transistor count in a commercially available single-chip
processor in 2016 was over 7.2 billion. This is the Intel Broadwell-EP Xeon processor.!

You can imagine that a chip consists of transistors that have been arranged in such a way
that they form all sorts of different gates, which are interconnected in clever ways, so that
they form arithmetic units that can perform calculations, such as adding. Other gates
interact to work as memory, and other gates engage in the control flow of data. This is
quite extraordinary, as the underlying transistors can only switch on and off. By connecting
them intelligently, we can let them perform very complex functions, which you see every
day when you use a computer. Brilliant research was required to produce special
materials, such as semiconductors, which have defined capabilities to conduct electronic
current only when an electric charge is applied to them. In the diagram below, you see how
each design step in the design process, from semiconductors to transistors and from there
to gates and higher-level functions, has led to increased functionality and sophistication.
Semiconductors were first discovered around the year 1821. It took 150 years of research
and development until the first integrated microcontroller, the Intel 4004, was released.

1 Source: Wikipedia: https://en.wikipedia.org/wiki/Transistor count
92 B4 Spark Mission Guide, Revision 1.0.2

https://en.wikipedia.org/wiki/Transistor_count

higher-level functions, such as
Arithmetics, Memory, Switching, etc.

Gates

Transistors

Semiconductor Materials

Summary

In this mission, we have learned how the 2,500-year history of logic has led to a method of
Boolean algebra, in which we can define logical functions known as gates. Intelligently
arranged, these gates can be put to good use to add or store information. Gates
themselves are made of transistors, also intelligently arranged to perform the desired
function of the gates, such as AND, XOR, NOR, etc. Computer chips can consist of billions
of transistors. The design of a computer chip is, therefore, a high-tech task that requires
many scientists and engineers. The B4’s different modules demonstrate some of the most
important parts of a computer’s central processing unit. Each of the B4’s modules has
chips on it, which are internally made of gates and transistors. We haven't really counted
them, but we estimate that the B4 is made of a few thousand gates. Most of them would
be in the Data RAM and Program RAM chips.

Checkpoint
Challenges 14

Compare your knowledge about
transistors that form gates to what you
know about biological systems. Can you
identify similarities?

If transistors were made of mechanical
parts that moved, rather than
semiconductor materials, what

N disadvantages would this bring?

How much does it cost to manufacture a
microprocessor? What would be the price
per transistor for this microprocessor?

B4 Spark Mission Guide, Revision 1.0.2 93

Mission 16: Cyber Security

Once we understand the hardware and software of a digital system in detail, we can start
to think about hacking it.

The B4 Computer Processor kit comes with a unique software library that interfaces
between the B4 and the included Arduino Uno. You have used it previously when you
programmed the B4 from the convenience of a laptop computer. However, it can also be
used to hack into the B4.

It is possible to hack the library so that it alters data and program code. We can also make
the Automatic Programmer module interfere with the normal operation of the B4 at
runtime. For example, you can hack the B4 to perform subtraction instead of adding, or flip
bits in the memory modules. It is quite entertaining and instructional to realise that
hardware can get hacked at such a low level that no virus scanner would be able to detect
it.

By conducting cyber security attacks in the B4, the impacts of these hacking exercises are
contained in the B4 environment and do not impact the safe and reliable operation of the
connected laptop computers.

In this section, we are investigating two strategies of hacking into the B4. We call such
strategies attack vectors. The better you understand a system, the better you can hack it.
We begin by understanding the B4’s software and then proceed to the functions of its
hardware.

Hacking into the computer processor is not necessarily intended to interfere with normal
operations in a bad way. It can also increase its abilities.

Software: Understanding the B4’s Arduino Library

In Mission 12, you installed the B4 Arduino library on your laptop or PC. If you haven’t
done this yet, go back to Mission 12 and follow the installation procedure. You will need
the B4 library for this mission. Previously, you were a mere user of the B4’s Arduino
Library. You used it to send machine or assembly code from the Arduino IDE to the B4. We
now take a deeper look into the library.

Find the Arduino libraries folder. On Windows and Macintosh machines, the default name
of the folder is "Arduino/libraries" and is located in your Documents folder. In there you find
a folder called B4. Open it.

Name

B B4.cpp
B B4ah

» B examples
B keywords.txt
B library.properties

Inside the B4's Arduino library

94 B4 Spark Mission Guide, Revision 1.0.2

B4.cpp contains the implementation of the B4 library, whereas B4.h is a header file. It

contains the definition of the B4 class. Yes, it is object oriented, but don’t worry about this.

If you remember our little Assembly example from Mission 13, you notice that we send the

assemblyProgram string to the assembler function with
myB4.assembler(assemblyProgram)

@ Arduino File Edit Sketch Tools Help

O @ Assembly_Example_1 | Arduino 1.8.0

Assembly Example_1
kinclude <B4 .h=
B4 myB4;
String assemblyProgram = "LOAD{S);ADD{4) WRT()3SUB(2)3WRT)3";
void setup()

=
Serial.begin(960@);

myB4 .0ssenb ler (assemb LyProgram);
myB4 .programB4{);
Ly
3 woid loop()
143{
5}

Arduino/Genuino Uno on fdev/cuwchusbseriall420

Assembly example from Mission 13

Open the file B4.cpp and find the assembler function.

B4 Spark Mission Guide, Revision 1.0.2

95

It starts like this:

void B4::assembler(String assemblerProgram)

{

String assemblerProgramLines[16];

String assemblerCodes[] = {"LOAD", "ADD", 'SUB", "WRT"};
int machineCodes|[] = {B0010, B0000O, B1000, B0110};

String assemblerCode;

String dataCode;

int semicolonIndex = 0;

int openBracketIndex = 0;
int closingBracketIndex = 0;
int programCounter = 0;

int programLength = 0;

int DataRAMContent[] = {
B0000, B0O0O0O, B0O00OO, B0O0O0OO,
B0000, B0O0O0OO, B0O00OO, B0O0OOO,
B0000o, B0OO0O, B000O, B0O0OOO,
B000o, B0O00O, B00O0OG, B0O0OO,

int ProgramRAMContent[] = {
B000o, BO00O, B000O, B0O0OO,
B000o, B0O00O, B000O, BO0OO,
B0000, B0O00O, B000O, BO0OO,
B0000, B0000O, B000O, BO0OO,

The beginning of the assembler function in the B4 Arduino library

This function converts the assembly code (like LOAD(5), ADD(4) and so on) into the
corresponding binary representation, which it stores in the DataRAMContent[] and
ProgramRAMContent[] arrays.

Notice the two arrays at the top: assemblerCodes[] contains the four instructions that the
B4 knows: Loading, Addition, Subtraction, and Writing (Storing) or data. The
machineCodes[] array contains the matching machine codes.

assemblerCodes[]
machineCodes|[] =

96

= {“LOAD“, "ADD", "SUB", IIWRT"};
{B0010, B000O, B1000, BO110};

B4 Spark Mission Guide, Revision 1.0.2

In Mission 13, we learned that LOAD maps to a B0010, ADD to BO0O0O and so forth, as per
the following mapping table.

Assembly Language Machine Code
LOAD B0010
ADD B0000
WRT (write) B0110
SUB (subtract) B1000

Matching Assembly Language with Machine Code

For the correct operation of the B4 it is very important that these mappings are absolutely
precise. But what if we changed the order of the elements of assemblerCodes array? We
could, for example, swap ADD and SUB.

{"LOAD", "SUB", “ADD", "WRT"};

assemblerCodes[] =
= {B0010, B000O, B1000O, BO110};

machineCodes[]

Now every time the B4 is supposed to add two numbers, it will instead subtract them and
when it is supposed to perform a subtraction, it will instead do an addition. That sounds
like fun. To try this out, make these changes in the code of your B4 library and then save it.
Then, load the Examples/B4/Assembly_Example_1 in your Arduino IDE. Again, flip back to
Mission 13 for the instructions. This will load the following program into your Arduino IDE:

LOAD(5) ; ADD(4) ;WRT() ;SUB(2) ;WRT();
Upload it to your B4’s Automatic programmer and run the program. What do you observe?
Instead of performing 5+4-2=7, the B4 will instead do 5-4+2=3.

Observe that the user still sees the same program
LOAD(5) ; ADD(4) ;WRT () ;SUB(2) ;WRT();

But we have hacked one level deeper where the program is translated into machine
instructions.

What else can we do? Well, we can design our own language. Instead of calling our
instructions LOAD, ADD, SUB and WRT, we can name them differently. How about
LIZARD, APPLE, SAUSAGE and WOMBAT? All you need to do to make this change is to
write

B4 Spark Mission Guide, Revision 1.0.2 97

{“LIZARD", “APPLE", “SAUSAGE", “WOMBAT"};

assemblerCodes[] =
= {B0010, B000O, B1000, BO110};

machineCodes[]

A corresponding assembly program would then look like this
LIZARD(5) ; APPLE(4) ; WOMBAT () ; SAUSAGE(2) ; WOMBAT () ;

You can choose any words you like. You can design your very own secret programming
language that no-one else can understand.

But perhaps you find the semicoli (;) that separate the instructions a bit dull and prefer
exclamation marks instead.

LIZARD(5) 'APPLE(4) !WOMBAT () ' SAUSAGE(2) 'WOMBAT() !

Looks cool. To make this change in your library, find the line

semicolonIndex = assemblerProgram.index0f("';");

and change it to

semicolonIndex = assemblerProgram.index0f(‘!"');

Save the change and you can run

LIZARD(5) 'APPLE(4) 'WOMBAT () ! SAUSAGE(2) !WOMBAT() !

from the Arduino IDE.

Have a play and imagine other words for your assembly instructions and the characters

that could separate them. Be careful to only use separators that are not already part of
your assembly instructions or the parentheses ().

98 B4 Spark Mission Guide, Revision 1.0.2

Hardware: Hacking deeper yet by understanding the Automatic Programmer
Let’s take a closer look at the hardware of the Automatic programmer. Here you see its

circuit board with the various wires (yellow and orange) between the pins. For the moment,
we are mainly interested in the light yellow wires.

@ CHIBIBHEEES

ABCDE
L] L] L |
Control Signals To Data RAM To Prg RArO
B4 Automatic Programmer
A: Reset Program Counter
B: Clock Overwrite L Py P . I ()
C: Write Data RAM 3 . ()
D: Write Program RAM PHHCT244N
E: Latch Reset : -
L o o o |
—{R1)
Qut D
D Write Data RAF
FI"OITI L‘tCh Fron Program RAN

Automatic Programmer circuit board

The Automatic Programmer can do a number of interesting things:

1) It can send control signals to
A. Reset the Program Counter to zero, which is equivalent to the user pressing the
Zero button on the Program Counter
B. Issue a Clock signal, which is equivalent to the user pressing the Enter button on
the Program Counter
Issue a write command to the Data RAM
Issue a write command to the Program RAM
Reset the Latch

mo o

It can also provide binary data to the Data and Program RAM modules.

The Chip on the Automatic Programmer is a 74HCT244. We use it to let data from the
Latch pass through to the Data RAM when the Automatic Programmer is inactive, or
separate the Latch from the Data RAM and feed data from the Arduino Uno to the Data
RAM. We use this when we program the Data RAM. Below is a schematic of it.

B4 Spark Mission Guide, Revision 1.0.2 99

Vee 26 1Y1 2A4 1Y2 2A3 1Y3 2A2 1Y4 2A1
|20 |19 16 |15 [1a |13 |12 |

f% anany
AR a L
& NTA

]1 2 3 5 |le |7 8 |9]10
1G 1A1 2Y4 1A2 2Y3 1A3 2Y2 1A4 2Y1 GND

74HCT244 Schematic

The pins 1G and 2G are in charge of opening and closing the connections from the input
pins denoted with an A, which are 1A1, 1A2, 1A3, 1A4, and 2A1, 2A2, 2A3, 2A4 to their
corresponding output pins, which are 1Y1, 1Y2, 1Y3, 1Y4, and 2Y1, 2Y2, 2Y3, 2Y4.

The 74HCT244 allows for the seperate operation of the four switches 1A1 to 1A4 by 1G
and the four switches 2A1 to 2A4 by 2G. However, on the Automatic Programmer Shield,
there is a connection between 1G and 2G. This means they are linked together and we
can operate all eight switches at the same time.

So when we activate the Automatic Programmer by pulling the pin A5 of the Arduino Uno
high to 5V, with:

digitalWrite(A5, HIGH), the 74HCT244 will separate the Latch from the Data RAM. The
Automatic Programmer will then act as a Man in the Middle and provide data of our own
choosing to the Data RAM.

The Arduino-provided data for the Data RAM comes from the Arduino pins 6 .. 9
The Arduino-provided data for the Program RAM comes from the Arduino pins 2 ... 5
Further, the control signals are assigned to the Arduino pins as follows

reset program Counter = AO
latchReset = 10;
writeProgramRAM = 11;
writeDataRAM = 12;
clockCycle = 13;

100 B4 Spark Mission Guide, Revision 1.0.2

The following table summarises the mapping of the Arduino pins to the corresponding

functions of the Automatic programmer.

Arduino pin Function Note

number

A5 activates the Automatic programmer and HIGH active
separate the Latch from the Data RAM

A0 Reset Program Counter (program HIGH active
counter gets re-set to 0)

2 Program RAM x1 bit HIGH active

3 Program RAM x2 bit HIGH active

4 Program RAM x4 bit HIGH active

5 Program RAM x8 bit HIGH active

6 Data RAM x1 bit HIGH active

7 Data RAM x2 bit HIGH active

8 Data RAM x4 bit HIGH active

9 Data RAM x8 bit HIGH active

10 reset Latch LOW active

11 write Program RAM LOW active

12 write Data RAM LOW active

13 clockCycle (Program Counter gets HIGH active
incremented by 1)

All the HIGH active pins require a

digitalWrite(pin number, HIGH)

to do something, whilst the LOW-active functions need a LOW to do their function with

digitaWrite(pin number, LOW)

In order to carry out hacking, all we need to do is to hijack the Arduino and activate or

deactivate pins A0, A5, 2..13 in clever ways.

Let’s explore a few ideas:

1) We could write a piece of software on the Arduino that would, at regular or random
time intervals, pull pin 13 to HIGH and therefore issue a clockCyle to the Program

B4 Spark Mission Guide, Revision 1.0.2

101

Counter. The user would then believe that perhaps the Enter button is broken,
complain to the manufacture and get it replaced.

2) That same piece of software could briefly activate the Automatic Programmer, write
some random data into the Data RAM and then deactivate. This will happen so quickly
that the user will not see it happen.

3) The software could also quickly reset the latch, therefore erasing the intermediate
results of a computation, or the result of a LOAD() instruction.

4) Alittle program could randomly re-set the Program Counter to O.

There are further options that we could pursue. Let’s try option 1) and 2), because they are
a bit different. We start with 1)

Hack 1: Randomly incrementing the Program Counter

We start by specifying a piece of code that, at random intervals, performs a call to the
clockCycle function in the B4 Library.

For this code, we start with the program Assembly_Example_1, which comes with the B4
library.

We add a new variable randNumber in which we store the value for the delay.
The Arduino automatically calls the loop() function repeatedly, so we don’t need to write
another loop ourselves. All we need to do is add three lines of code.

- Firstly, a line that generates a random number. We have chosen a value between 5,000
and 19,999 mili-seconds (ms).

- Then a call to the clockCycle() function from the B4 library

- Finally the delay of the value we previously generated. This will stop our code for a short
period.

#include <B4.h>

B4 myB4;
String assemblyProgram = "LOAD(5);ADD(4);WRT();SUB(2);WRT();";
long randNumber;

void setup()

{
Serial.begin(9600);
myB4.assembler(assemblyProgram);
myB4.programB4();

void loop()
{

randNumber = random(5000, 20000);// generates a random number
between 5000ms and 19999ms

myB4.clockCycle(); // perform a ClockCycle

delay(randNumber); // wait for the number of ms.

by

Upload the code to your B4 and observe what happens.

102 B4 Spark Mission Guide, Revision 1.0.2

The B4 will ‘randomly’ perform a clock cycle. You can experiment with the random values
and make them larger or smaller. The larger, they are, the more irregularly the events
appear, making things look confusing from the perspective of the unsuspecting user.

Hack 2: Randomly changing the Data RAM

For this hack, we need to take control of the pins 6,7,8,9 and 12. Pins 6-9 provide data to
the Data RAM and pin 12 activates the Automatic programmer.

#include <B4.h>

B4 myB4;
String assemblyProgram = "LOAD(5);ADD(4);WRT();SUB(2);WRT();";
long randNumber;

void setup()

{
Serial.begin(9600);
myB4.assembler(assemblyProgram);
myB4.programB4();
pinMode(6, OUTPUT); //bit @ of the Data RAM
pinMode(7, OUTPUT); //bit 1 of the Data RAM
pinMode(8, OUTPUT); //bit 2 of the Data RAM
pinMode(9, OUTPUT); //bit 3 of the Data RAM
pinMode(12, OUTPUT);

¥

void loop()
{

randNumber = random(5000, 10000);// generates a random number
between 5000ms and 19999ms

digitalWrite(A5, HIGH); // activate automatic programmer

digitalWrite(6, HIGH); // write bit @ of the Data RAM
digitalWrite(7, HIGH);// write bit 1 of the Data RAM
digitalWrite(8, HIGH);// write bit 2 of the Data RAM
digitalWrite(9, HIGH);// write bit 3 of the Data RAM

digitalWrite(12, LOW); // write cycle, part 1

digitalWrite(12, HIGH); // write cycle, part 2

delay(1000); // keep the LED of the Automatic Programmer on.
Deactivate this line after testing.

digitalWrite(A5, LOW); // deactivate automatic programmer

delay(randNumber); // wait for the number of ms.

}

How does it work?

- Firstly, we set the pins to Output, so that we can write to them later. We do this in the
setup () function, because we only need to do this once.
- Then, we do the recurring tasks inside the loop() function

B4 Spark Mission Guide, Revision 1.0.2 103

generate a random number as value for the delay

activate the automatic programmer

set the values of the data bits. In this example, we set them all to HIGH
we then keep the automatic programmer active for 1000ms

we deactivate the Automatic Programmer

finally, we wait until we do this again.

o0k W~

The 1000ms delay in step 6 is only there to show you that the code is working. When you
are happy that it works correctly, you can deactivate this line and upload the code again.
The code runs so quickly that our human eyes are not fast enough to see the Automatic
Programmer’s LED switching on. The unsuspecting user will think that the Automatic
programmer is inactive the whole time. Tricked ya !

You see that our hack is completely bypassing the B4 library. And there is not much the
library can do to prevent our hack.

As an extension, you can change the code to choose the data RAM values randomly,
rather than 1111 as we’ve done.

As you know understand these two hacks you can tackle the hacks 3 and 4 yourself.

104 B4 Spark Mission Guide, Revision 1.0.2

Further Reading

Below, we have listed some really good resources that we used during the design of the
B4. We very much recommend reading them.

Charles Petzold, CODE The Hidden Language of Computer Hardware and Software, 1999

http://www.charlespetzold.com/code/

Logic Gate: https://en.wikipedia.org/wiki/Logic_gate

Digital Logic Gates: http://www.electronics-tutorials.ws/logic/logic_1.html
Flip Flops: https://en.wikipedia.org/wiki/Flip-flop_(electronics)

History of Logic: https://en.wikipedia.org/wiki/History of logic
Transistor: https://en.wikipedia.org/wiki/Transistor

Troubleshooting

Every good experiment has the potential for failure. This is usually the moment when we
learn something new. Below is a list of the typical errors and their solutions.

Symptom

Solution

Green light of a module is off

Check if power cable is connected

Check if the wires at the power cable plugs are
fully inserted. Change cable.

Unexpected behaviour. Odd
output of the modules. Looks
erratic.

Check if all wires are properly connected. Tick
them off one by one on the schematic of the
corresponding mission.

Check if the wires at the data cable sockets are
fully inserted. Change cable.

Have you inserted the correct module? Check!

All lights are off

Connect USB cable to a computer, USB power
outlet or USB battery.

There may be a short circuit, usually cause by a
power cable. Disconnect all power cables from the
Program Counter and check if the Program
Counter’s green LED comes on. If yes, carefully
connect one module after the other.

Still got problems? Email us at: enquiries @digital-technologies.institute.

B4 Spark Mission Guide, Revision 1.0.2

105

http://www.charlespetzold.com/code/
https://en.wikipedia.org/wiki/Logic_gate
http://www.electronics-tutorials.ws/logic/logic_1.html
https://en.wikipedia.org/wiki/Flip-flop_(electronics
https://en.wikipedia.org/wiki/History_of_logic
https://en.wikipedia.org/wiki/Transistor
mailto:enquiries@digital-technologies.institute

Appendix A: Programming Table Template

You can photocopy this table and use it to design and document your own programs for
the B4.

Name of the Program

Author(s):

Data RAM Program RAM Description

Step # 3|2 |1 (0]QSUB|WRT| SEL | USR

Step 15

Step 14

Step 13

Step 12

Step 11

Step 10

Step 9

Step 8

Step 7

Step 6

Step 5

Step 4

Step 3

Step 2

Step 1

Step 0

106 B4 Spark Mission Guide, Revision 1.0.2

Appendix B: Fun Algorithms

In this section, we collect some of the interesting problems that people have solved with
the B4 computer. We start with a fun algorithm that students have suggested.

B.1 Fairly Sharing Chocolate
As many of us agree, there is no such thing as ‘too much chocolate’. Recently, six
students were given a package of Merci chocolates. As you might know, it contains 16
small bars of chocolate, two from each type. So there are eight different types of
chocolate. But how do we distribute the chocolate most fairly amongst the students?

Appendix C: Solutions

Here are the solutions to the tasks from the different chapters in this book.

Checkpoint .
Challenges 1 Sl
What is the decimal value of 1111? 8+4+2+1=15
What is the decimal value of 01107? 4+2=6
What is the decimal value of 10107? 8+2=10
What is the binary value of decimal
1111
157
What is the binary value of decimal
o 1100
] 124
What is the bma;y?value of decimal 1001
How can you easily spot an odd Odd numbers always end with a 1.
binary number? (and even numbers with a 0).
Checkpoint .
Challenges 2 Sl
What is 0101 + 1010? 1111 (5+10=15)
What is 0010+00107? 0100 (2+2=4)
What is 0111+00017? 1000 (7+1=8)
What is 1111 + 0001? Why are 10000 (16). This is a 5 bit
] all the Adder’s LEDs off? number. All LEDs are off
because the Adder can only work
with 4 bits. It is simply ‘blind’ to
the 5th bit.

B4 Spark Mission Guide, Revision 1.0.2

107

Checkpoint Calculate in

Challenges 3 binary Solution
5 minus 2 0101-0010 is equivalent to 5 plus the binary
complement of 2 plus 1.
0101
+1101
10010
+ 1
10011
We ignore the 5th bit (because we only have a 4-bit
computer) and the result is 0011 (3)
10 minus 0 1010 (obviously), but let's walk through the calculation.
The binary complement of 0 is 1111
1010
+1111
11001
+ 1
11010
We ignore the 5th bit (because we only have a 4-bit
computer) and the result is 1010 (decimal 10)
15 minus 15 The binary complement of 15 (1111) is 0000
| 1111
+0000
1111
+ 1
10000

We ignore the 5th bit (because we only have a 4-bit
computer) and the result is 0000 (decimal 0)

2 minus 3. What The binary complement of 3 (0011) is 1100
do you see? 0010
+1100

1111
That’s 15, not -1. Why? Our computer can only deal
with positive numbers, so for it-1 is the same as 15.
Again; that’s not a bug. We simply haven’t told our
computer about negative numbers yet.

108 B4 Spark Mission Guide, Revision 1.0.2

Checkpoint
Challenges 5

Solution

Store the number 0111
(decimal 7) on floor 5.
Move away and come back
to check it. Does it remain?

Yes, the value remains as long as the
Data RAM is powered or the address
gets overwritten by another value

If you wanted to store a
high score in a game,
would you use a Latch or
the Data RAM? Why?

You would use the Data RAM,
because the Latch’s content is
changed on every program step. It is
not meant to hold data for a long time.

If you wanted to store the
value 0 on floor 0O, value 1
on floor 1 ... until the value
15 on flor 15, how would
you do this automatically,
just using the Ptrogram
Counter and the Data Ram
Module”?

1) Remove the Variable. Connect
the output of the Program
Counter to the input of the Data
RAM with a 4-in wire.

The Data RAM is activated by a LOW
signal, which is what the !CLK signal
provides.

2) Connect the ICLK signal of the
Program Counter to the Write pin
of the Data RAM, using a 1-pin
wire.

Now, every time you press the Enter-

button on the Program Counter, the

value will get written into the memory
cell at that address. 0->0, 1->1, ...
15->15

B4 Spark Mission Guide, Revision 1.0.2

109

Checkpoint
Challenges 7a

Solution

Try 2+6+7. What's the final
result?

1) Firstsum: 2 + 6 = 8 (binary
1000) — press Enter to store
in the Latch.

2) Reuse a Variable: set it to
1000 (8), set the other
Variable to 7 (0111).

3) Finalsum:8+7 =15

(binary 1111).

What happens if you forget to
store the first sum in the Latch
before changing a Variable?

You lose the intermediate result.
This means you have nothing to
enter into the variable. The
process stops. Moral: press
Enter to clock the Latch before
updating the Variables.

Could you extend this method to
add four numbers? How?

Extending to four numbers
(A+B+C+D) with the same setup

We repeat the store-and-copy
cycle:

1) Set Variablesto Aand B —
press Enter = Latch = D; =
A+B.

2) Copy D; from Latch into one
Variable, set the other to C
— Adder shows D;+C —
press Enter = Latch = D,.

3) Step 3: Copy D, into one
Variable, set the other to D
— Adder shows R =D, + D
(i.,e., (A+B)+C+D).

4) It's just “add two, store,
copy, add next, store, copy,
... until you're done.

110

B4 Spark Mission Guide, Revision 1.0.2

Checkpoint
Challenges 7b

Try adding four numbers.
1+2+4+5.

Solution

What'’s the final result?

First Addition: 1+2=3
Second Additon: 3+4=7
Third Addition: 7+5=12

How often do you need to move
the endpoint of the select wire?

Only once — after the first
addition.

During the first addition, the
Adder must take its right
input from the Variable (so
Select = LOW).

After storing that first sum in
the Latch, flip Select to
HIGH.

From then on, all subsequent
additions reuse the
intermediate result (from the
Latch) to be routed to the
right input port of the Adder.

B4 Spark Mission Guide, Revision 1.0.2

111

Checkpoint
Challenges 7¢

Solution

You just computed 1 +2 +4 =7.
Now add another number from
RAM (e.g., 5). What do you
expect the new total to be?

Try it and see if your prediction
was correct.

v Final result = 12.

Prediction: After 1 + 2 + 4 =
7, adding 5 should give 12.
Try it: The Adder computes
Latch(7) + RAM(5) = 12.

Why do we only need to flip the
Select switch once, after the first
number is loaded into the Latch?

During the first addition, the
Adder must take its right
input from RAM, while the
Latch is still empty. That’s
why Select = HIGH (so the
Latch loads the RAM value).
After that, the Latch always
holds the running total. Now
the Adder must take its right
input from the Latch instead.
That’s why we flip Select =
LOW once, and never touch
it again.

In a real CPU, why is it useful to
separate the LOAD step (into a
register) from the ADD step?

If we didn’t separate LOAD
and ADD, every RAM value
would be combined with
whatever was already in the
Latch — even when we
wanted a “clean” new
number.

Worse, if we wrote results
back into RAM, we'd end up
doubling values (RAM +
Latch showing the same
thing).

By forcing LOAD — ADD,
CPUs avoid these errors and
can safely write results into
RAM without corrupting
future calculations.

112

B4 Spark Mission Guide, Revision 1.0.2

Checkpoint
Challenges 8

Solution

Right now, our Program RAM
has just one instruction: LOAD
the first number into the Latch.
After that, the Selector stays
on ADD, so every new number
from Data RAM is added
correctly.

But here’s the puzzle:

What would happen if you
accidentally programmed two
LOAD instructions in a row at
the start of Program RAM?

¢ Would the additions still
work?
e Why or why not?

If you LOAD twice, the second LOAD
will overwrite the first number already
sitting in the Latch. That means the
first number gets lost, and the
addition won't work properly.

This shows why programs have to be
written carefully: each instruction has
a purpose, and even a small mistake
(like an extra LOAD) can break the
calculation.

So far, our computer always
reuses the result from the
Latch for the next addition.
That's why it can keep
chaining numbers like 1 + 2 +
4.

But what if you wanted to do
two separate additions
instead? For example:
e Add 1 + 2 (and get 3)
e Then separately add 4 + 5
(and get 9)

Can you think of a way to
program this so the second
addition does not reuse the
first result?

To do two independent additions, you
need to start the second calculation
with a new LOAD instruction.

e The first LOAD puts “1” into the
Latch, then the program adds “2” to
get 3.

e A second LOAD then replaces the
Latch with “4”, so the next ADD
brings in “5” to make 9.

To do this, you program the Data
RAM with 1, 2, 4, and 5. The Program
RAM is programmed with 0010, 0000,
0010, 0000. That's LOAD, ADD,
LOAD, ADD.

B4 Spark Mission Guide, Revision 1.0.2

113

Checkpoint Challenges 9

Create a Program Table for the addition 3 + 4.

Data RAM Program RAM Comment

Step # 3 2 1 0 A B SEL D

Steps 2-15 | 0 0 0 0 0 0 0 0 do nothing

Step 1 0 1 0 0 0 0 0 0 Send 0100 to the Adder,
which adds it to the 0011
stored in the Latch.

Step0 |O 0 1 1 0 0 1 0 Load 0011 from the Data
RAM into the Latch. This is
the first number for the Adder

Bonus: Can you extend your table so that the computer first calculates 1 + 2, and then
separately calculates 3 + 4 (two additions, not chained together)?

The trick here is to have a separate SEL=HIGH at program step 2. This loads the latch
with 3 and therefore interrupts the chain of additions.

Data RAM Program RAM Comment

Step # 3 2 1 0 A B SEL D

Steps 4-15 | 0 0 0 0 0 0 0 0 do nothing

Step 3 0 1 0 0 0 0 0 0 Send 0100 to the Adder,
which adds it to the 0011
stored in the Latch.

Step 2 0 0 1 1 0 0 1 0 Load 0011 from the Data
RAM into the Latch. This is
the first number for the Adder

Step 1 0 0 1 0 0 0 0 0 Send 0010 to the Adder,
which adds it to the 0001
stored in the Latch.

Step 0 0 0 0 1 0 0 1 0 Load 0001 from the Data
RAM into the Latch. This is
the first number for the Adder

114 B4 Spark Mission Guide, Revision 1.0.2

Checkpoint Challenges 10

Question: Your current program shows how subtraction works with the Inverter. Now,
change it to calculate 11 -3 - 2.

Answer: Here is the program:

Data RAM Program RAM Comment

Step# | 3 | 2| 1 | o0 JsuB| B |SEL| D

Steps 3-15 | 0 0 0 0 0 0 0 0 do nothing

Step 2 0 0 1 0 1 0 0 0 Activates the Inverter. Sends
the binary complement 1101
to the Adder. 8-2=6

Step 1 0 0 1 1 1 0 0 0 Activates the Inverter. Sends
the binary complement 1100
to the Adder. 11-3=8

Step 0 1 0 1 1 0 0 1 0 Load 11 from the Data RAM
into the Latch. This is the first
number for the Adder

Question: Imagine you didn’t have Program RAM. Which wire would you have to
manually move in order to make the subtraction work? Why is letting Program RAM
handle this better?

Answer: You would have to manually move the Inverter control wire each time you
wanted to switch between addition and subtraction. Program RAM does this automatically
at the right program step, making the process reliable and freeing you from manual
rewiring.

B4 Spark Mission Guide, Revision 1.0.2 115

Checkpoint Challenges 11

Question: Program the Data RAM so the computer calculates 6 + 3 and stores the result
in Data RAM. Which step should WRT be set to 17 What value ends up in the RAM at that
step’s address?

Answer: The write should happen after the addition at step 2 of our program. The value
willbe 6 + 3 =09.

Data RAM Program RAM Comment

Step # 3 2 1 0 SUB | WRT | SEL D

Steps 3-15 | 0 0 0 0 0 0 0 0 do nothing

Step 2 0 0 0 0 0 1 0 0 Stores the contents of the
Latch in the Data RAM

Step 1 0 0 1 1 0 0 0 0 Sends 3 to the Adder. 6+3=9

Step 0 0 1 1 0 0 0 1 0 Load 6 from the Data RAM
into the Latch. This is the first
number for the Adder

Question: Run your program with WRT = 0 for every step. What changes in Data RAM?
What does this tell you about the role of WRT?

Answer: Nothing in Data RAM changes; the Latch updates but Data RAM does not.
WRT is the only signal that authorises a store—no WRT, no write.

116 B4 Spark Mission Guide, Revision 1.0.2

Checkpoint

Challenges Solution
12
If you were In a calculator, we often want to use the output of one
to design a calculation as input of another, such as 5+4=9 minus
calculator, 2=7. So WRT() should be B0110. This way, the Data
would you Selector keeps feeding intermediate results to the Latch,
design which provides it to the Adder.
WRT() to be
B0110, or
B0100?
If WRT() To answer this question, we can conduct an experiment
were BO100 | by running the following program:
and you
wanted the #include <B4.h>
B4 to run the | B4 myB4;
following int DataRAMContent[] ={
program B0101, BO100, BO00O, BOO10,
"LOAD(5);A B0000, BO0O0OO, BO0O0O, BOOOO,
DD(4);WRT(B0000, BO0O0O, BO0O0O, BOOOO,
);SUB(2);". B0000, BO00O, BO0O0O, BOOOO,
3
What would
the output of int ProgramRAMContent[] ={
the Latch be B0010, BO0O0O, B0100, B1000,
after B0000, BO0O0O, BO0O0O, BOOOO,
L program B0000, BO00O, BO0O0O, BOOOO,
step 3 has B0000, BO0O0OO, BO0O0O, BOOOO,
been J
executed?
Why is the void setup()
result not 7?7 | {
How can this | myB4.loadDataAndProgram(DataRAMContent,
be ProgramRAMContent);
explained? myB4.programB4();
}
void loop()
{
}

After program step (3), the output of the Latch is BO010.
This is not BO111 because theData selector is inactive
and has channeled the output of the Adder (2) to the
Latch. 2 is the result of 9 (from the Data RAM)+9 (from
the Latch) after program step 2. The sum is 18=B10010.
But since we have a 4-bit computer, the leading 1 is
omitted. The result is BO010.

B4 Spark Mission Guide, Revision 1.0.2

117

Checkpoint
Challenges
14

Solution

118

Compare your
knowledge about
transistors that
form gates to
what you know
about biological
systems. Can
you identify
similarities?

Transistors form gates, which form higher-level
functions, such as arithmetics, memory, switching,
etc. Similarly, cells form organs, which in turn form
organisms.

If transistors
were made of
mechanical parts
that moved,
rather than
semiconductor
materials, what
disadvantages
would this bring?

Mechanical parts are larger, consume more electricity
and wear more quickly than semiconductors. Modern
processors consist of billions of transistors. Let’s
assume we had a 1 billion transistor chip and we
wanted to build it with relays, which are
electromechanical switches. If each transistor were to
be replaced with one relay, then we would require 1
billion relays. Let’s further assume that 1 relay would
require 1cm”3 (the size of a sugar cube) of space
and that we need another 1cm”3 of space around
each relay for wiring, etc.. So 2cm”3 of space per
relay. That would be 2 billion cmA3. for all our 1 billion
relays. That’s 2,000,000,000 cm”3 = 2,000 mA3, or
the equivalent of a cube with a side length of 12.6m,
equivalent to a 4 storey building. If each relay
required 50mA of current at 5V, then we’d need
50mA*1,000,000,000=50,000,000A.
50,000,000A*5V=250,000,000W, which is 250 Mega
Watt. A smaller coal fired power plant produces 500
megawatt of electricity and burns 1.4 million tons of
coal each year. We’d need half of this.

In summary: If we could build such a relays computer,
it would be the size of a 3 storey house, require half a
coal-fired power plant and consume 700,000 tons of
coal each year. This would be a tad too big for our
pants. Not to mention the heat that the 700,000 tons
of coal generate.

B4 Spark Mission Guide, Revision 1.0.2

Checkpoint
Challenges
14

Solution

How much does
it cost to
manufacture a
microprocessor?
What would be
the price per
transistor for this
microprocessor?

Let’s pick the XBox One processor which has 5 billion
transistors. The XBox console’r retail price is about
$350. Let’s assume that the cost of the processor is
maybe $50. So, the price per transistor is
$50/5billion=$0.000 000 01 or 0.000001 cents, thats
a thousands of a thousands of a cent per transistor.
Let’s put this into perspective: The print edition of the
New York times newspaper has about 140,000
words. The average length of an English word is 5
letters. We conclude that the New York times
contains 5*140,000=700,000 letters. If it costs $2 to
make one copy of the New York times , then the cost
per letter is $2/700,000=$0.000 003 or 0.000 3 cents.

0.0003 divided by 0.000001 is 300.

So, making a transistor in a chip is about 300 times
cheaper than printing a letter in a newspaper.

What if we estimated the price of the processor
wrong?If it is less than $50, then the ratio is greater
than 300:1. If it is more than $50, let’s say $100, then
the ratio is 150:1.

Fairly Sharing Chocolate:

We assign each students a number from 1 to 6. With 16 chocolates available, each
students gets 2 chocolates. The remaining 4 go to the teacher :-). 2x6=12, so there are 12
rounds in which students select one chocolate each. We number the rounds from 0 to 11
and assign rounds to students. There are many possible ways of assigning them. Below is
one of them. Student1 draws first (Round1), followed by Student2, 3, 4, 5, and Student6.
Student 6 hen draws twice, followed by Student5, 4, 3, 2, and finally Student1 draws her
second piece of chocolate.

Student1 Student2 Student3 Student4 Student5 Student6
RoundO Round1 Round2 Round3 Round4 Round5
Round11 Roundi10 Round9 Round8 Round?7 Round6

We want the Adder of the B4 to display the number of the student whose turn it is to select

a chocolate.

B4 Spark Mission Guide, Revision 1.0.2

119

Data RAM Program RAM Description

Step # 3 2 |1 (0§ SUB |WRT|SEL | USR

Step 15

Step 14

Step 13

Step 12

Step 11 0 0 0 |1 1 0 0 0 Subtract 1. That’s
student1

Step10 | O 0 0 |1 1 0 0 0 Subtract 1. That’s
student2

Step 9 0 0 0 |1 1 0 0 0 Subtract 1. That’s
student3

Step 8 0 0 0 |1 1 0 0 0 Subtract 1. That’s
student4

Step 7 0 0 0 |1 1 0 0 0 Subtract 1. That’s
student5

o
o
o
o

Step 6 0 0 0 (O Add 0. Student 6 gets

a second draw

Step 5 0 0 0 |1 0 0 0 0 Add 1. That’s student6
Step 4 0 0 0 |1 0 0 0 0 Add 1. That’s student5
Step 3 0 0 0o |1 0 0 0 0 Add 1. That’s student4
Step 2 0 0 0 |1 0 0 0 0 Add 1. That’s student3
Step 1 0 0 0o |1 0 0 0 0 Add 1. That'’s student2
Step 0 0 0 0 |1 0 0 1 0 Load 1

Question: What other method can you think of to distribute the chocolates? How would a
program look like that implements your method?

120 B4 Spark Mission Guide, Revision 1.0.2

Appendix D — Design Debate: Accumulator vs. Selector

When building a CPU, there are often many possible designs. Let’'s compare two popular
options:

Option 1: Accumulator-Only Design (no Selector)
* How it works:
+ RAM feeds one side of the Adder.
+ The Latch (Accumulator) always feeds the other side.
+ The Adder’s output is always fed back into the Latch.
+ Advantages:
+ Very simple wiring.
* Minimal number of components.

+ Works fine for repeated additions, as long as you don’t write results back to
RAM.

* Problems:

+ The Latch is always “in the loop.” If you write the result back into RAM, the
Adder sees the same value from both sides (RAM + Latch) and doubles it.

+ No flexibility: you can’t choose between “fresh” values from RAM and
intermediate results.

+ Historically, accumulator-only CPUs existed, but they were quickly replaced as
programs became more complex.

Option 2: Selector + Latch Design
+ How it works:

« The Selector decides whether the Latch should load a fresh value from RAM or
the output of the Adder.

+ The Latch then feeds the Adder for further calculations.
+ Advantages:
+ Clean separation between LOAD and ADD.
+ You can safely write results back into RAM without doubling problems.
+ Much closer to how modern CPUs operate, with explicit control over data flow.
« Scales better for more complex operations.
- Disadvantages:
+ Slightly more complex wiring.
+ At first, harder to understand why the Selector is needed.

So Which One Wins?
+ Accumulator-only is like a one-trick pony: neat and minimal, but it quickly runs into
problems.

+ Selector + Latch may look more complicated at first, but it avoids hidden traps and
sets you up for more advanced designs.

This is why our B4 computer uses the Selector + Latch approach from Mission 7c¢

onwards. It’s the design that makes real computers work reliably, millions of times per
second.

B4 Spark Mission Guide, Revision 1.0.2 121

Appendix E: Extension Kits

The B4 Computer Processor Kit can be extended towards graphics and memory. The
extension Kits are available at https://www.digital-technologies.institute/shop

This extension kit adds
graphics output capabilities to
the B4 Spark. The Dot Matrix
Display Module can output
ASClII-style characters and
symbols on a4 by 5 LED
matrix. In addition, students
can program 16 of the LEDs
separately and thus design
their own graphics.

Graphics Extension
Kit

DIGITAL
TECHNOLOGIES
INSTITUTE

The ability to remember is one
of the fundamental functions of
any computer. Memory is
essential to perform
algorithms. We have taken a
deep look inside the black box
and enlarged it. The result
is an interactive memory kit
that shows us the inner
workings of a data RAM The
RAM module. can be used as
= a replacement for the Data
TESmotoaies RAM module in the B4 Spark
Computer Processor kit.

Computer Memory
Kit

122 B4 Spark Mission Guide, Revision 1.0.2

https://www.digital-technologies.institute/shop

Appendix F: Quick Reference Guide

binary

decimal

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

Ol | Nl | M~]|]WOW]IDN

1010

-
o

1011

—
—

1100

12

1101

13

1110

14

1111

15

B4 Opcodes at a Glance

Bit 3 (SUB) Bit 2 (WRT) Bit 1 (SEL) Bit 0 (free)

Name Subtract Write Select (free)

When it’s 1... The Inverter is | Store the Latch | Selector takes | Reserved for
active — Adder | value in Data input from Data | student
subtracts RAM RAM extensions

When it’s O... Adder adds No write into Selector takes | Not used (for

Data RAM input from now)
Adder

B4 Spark Mission Guide, Revision 1.0.2

123

124 B4 Spark Mission Guide, Revision 1.0.2

	Included Parts
	Hello Parents and Teachers
	Hello Students
	B4’s Parts
	Core Modules
	Helper Modules
	Wires and Connectors
	A Word about Power
	Please look after me

	Exploration through Missions
	Mission Overview
	🟢 Part 1 – Building the Foundations
	Mission 1 – The Heartbeat of the Machine
	Mission 2 – The B4 Learns to Add
	Mission 3 – The B4 Learns to Subtract
	Mission 4 – The B4 Learns to Remember
	Mission 5 – The B4 Builds Its Memory Tower
	Mission 6 – The B4 Learns to Route Traffic
	Mission 7a – Adding Three Numbers by Hand (with a Memory Boost)
	Mission 7b – Automating the Third Number (No More Manual Copying)
	Mission 7c – Loading and Adding with Data RAM

	🟡 Part 2 – Automation with Program RAM
	Mission 8 – Automating the Selector with Program RAM
	Mission 9 – Program Tables
	Mission 10 – Subtraction with the Inverter
	Mission 11 – Storing Calculation Results in the Data RAM
	📖 Here’s a question: How does Program RAM tell the hardware what to do?
	📖 Here’s another question: Why does everything work in just the right order?

	🔴 Part 3 – Toward a Real CPU
	Mission 12: Automatic Programming
	Step 1: Installing the Automatic Programmer
	Step 2: Modules and their Wiring
	Step 3: Installing and Configuring the Arduino IDE
	Step 4: Installing the B4 Arduino Library
	Mission 13: Program Language Design
	Simplifying our Program
	Summary
	Mission 14: On the Role of Timing
	Mission 15: So, how does a Computer work ... actually?
	Logic and Boolean Logic
	A Logical Adding Machine
	A Logical Memory Machine
	Engineering
	Summary
	Mission 16: Cyber Security
	Software: Understanding the B4’s Arduino Library
	Hardware: Hacking deeper yet by understanding the Automatic Programmer
	Hack 1: Randomly incrementing the Program Counter
	Hack 2: Randomly changing the Data RAM

	Further Reading
	Troubleshooting
	Appendix A: Programming Table Template
	Appendix B: Fun Algorithms
	Appendix C: Solutions
	Appendix D – Design Debate: Accumulator vs. Selector
	Appendix E: Extension Kits
	Appendix F: Quick Reference Guide

